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Abstract

The present paper deals with the implementation of risk analysis in engineering economic 
problems, using Monte Carlo simulation. The paper consists of two parts. After a short intro-
duction about risk analysis methods used in engineering economic problems, the first part dis-
cusses the role of simulation, especially Monte Carlo simulation, in risk analysis and presents an 
extended review of studies, using either statistical techniques in general, or specifically Monte 
Carlo simulation in risk analysis. In the second part of the paper, we construct a model of a Monte 
Carlo simulation for the appraisal of a potential investment with uncertain annual revenues and 
costs, using Excel Spreadsheets and Visual Basic. The implementation and use of the model is 
demonstrated with a numerical example. The results obtained show that Monte Carlo simulation 
can prove a valuable technique in the decision making for the evaluation of a potential invest-
ment. JEL Classifications: CIS, Gl 1, M10.
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1. Introduction

While management science is developing through out the years, day-to-
day managers’ tasks become more and more complicated. Decision making to 
undertake a potential investment is one of the basic fields in the management 
science and especially in the top-level management. This exactly is the object 
of a relatively new economic field, engineering economy; to enable managers 
and engineers to evaluate in accuracy the economic consequences of major 
capital investments. An investment project’s impact on the profitability of an 
organization is often significant; therefore the evaluation of the financial risks 
of the potential investment is more than essential before making the final deci-
sion to undertake it. Although some of the input information in an engineering 
economic problem (such as the cost of equipment or the current tax rate) can 
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be well defined and their quantities are deterministic, most of the required 
information is uncertain, such as the cash flows from revenues and costs, the 
interest rates, the project life or others such as the cost of labour and raw mate-
rials, the level of demand etc. In the case of an investment appraisal decision, 
the usual non-deterministic variables are the revenues and costs generated from 
the potential investment (Goyal et al., 1997).

Capital investment is about identifying, analyzing and managing uncertainty. 
Additionally, risk is a part of any investment decision. Assessing uncertainty and 
risk is an important and often complex task in reaching effective capital invest-
ment decisions. The term risk focuses on the potential gain or loss (of economic 
or other nature) resulting from the investment decision. Projects with low prob-
ability (or small magnitude) of loss may be judged to have a relatively low risk, 
while on the other hand, projects with high probability (or high magnitude) of 
loss may be judged too risky for implementation.

Generally, risk handling methods fall into two broad categories: simple risk-
adjustment methods and risk analysis. Risk-adjustment methods are mainly 
based on deterministic estimations and proper adjustments to the Discounted 
Cash Flows model but despite the fact that they are easy to use, they contain 
assumptions that may not be clearly understood. On the other hand, risk analysis 
techniques emphasize the awareness of the uncertainties that influence critical 
project variables. The increased risk information they offer not only improves 
the understanding of the nature of risks and reduce forecasting errors, but pro-
vides managers with many qualitative benefits as well (Ho and Pike, 1998).

The importance of risk analysis in the evaluation of capital investments has 
been pointed out by many studies. Pike (1988; 1989) conducted a survey based 
on a sample of 100 large UK firms, examining the capital budgeting practices 
in investment selection techniques over an 11-year period, in years 1975, 1980 
and 1986. The purpose of the study was to examine the trend towards greater 
sophistication in investment selection techniques and their resulting impact 
on the effectiveness in evaluating major capital projects. From the analysis of 
responses by the sample firms, Pike concluded that there had been remarkable 
increases in the use of sophisticated investment selection techniques, particular-
ly in risk analysis (from 26% in 1975 to 86% in 1986) with the use of discounted 
cash flow and sensitivity analysis techniques. According to Pike, this increase 
was closely associated with higher levels of capital investment effectiveness, as 
perceived by the firms’ senior managers.

Scenario analysis is one of the most common approaches in risk analysis, 
incorporating worst- and best-case scenarios. However, these scenarios are 
neither easy to be interpreted and do not provide probabilities of occurrence, 
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nor they provide other useful information such as the probability of money loss 
invested in a project. Another approach of handling economic risk is sensitivity 
analysis, a useful technique that can provide insight into risk analysis prob-
lems, although it is inappropriate when statistical dependence exists between 
variables (Eschenbach and Gimpel, 1900). Other commonly used risk analy-
sis techniques for large-scale project evaluation include probability analysis, 
decision-tree analysis or Monte Carlo simulation, a technique which combines 
risk analysis and simulation and will be discussed in the next paragraph (Ho and 
Pike, 1998).

2. The role of simulation in handling economic risk

The term simulation is used in reference to any analytical method that imi-
tates a real-life system, especially when other analyses are too mathematically 
complicated or too difficult to be reproduced. A simulation model is a system 
that can be “taught” how the real system would react in various conditions. 
Most of these models are constructed as a series of mathematical equations. 
The simulation experiment involves the interchange of a number of input vari-
ables, in order to determine the impact of their various combinations on one 
or more output variables. Computer simulation models are systems using the aid 
of computer hardware and software and most of the times have the form of an 
electronic spreadsheet. Such models are implemented in order to demonstrate 
how spreadsheets can be used to describe the philosophy of a simulation model, 
to perform the necessary calculations, to generate the simulation data and pro-
vide a summary of the simulation results.

While spreadsheets may appear to be valuable in conducting single simula-
tion studies, they are generally limited to smaller and less complicated simula-
tion models, since they can only reveal a single outcome, generally the most 
likely or average scenario. As a system grows in complexity, other computer 
procedures may be necessary to adequately model it and carry out the simula-
tion calculations. Spreadsheet risk analysis uses both a spreadsheet model and a 
simulation to automatically analyze the effect of various input variables on one 
or more output variables of the modeled system. General-purpose computer 
programming languages, such as Visual Basic, can be used to develop a compu-
ter program that will model the system and perform the simulation computa-
tion. The advantage of using general-purpose programming languages rather 
than a single spreadsheet is that such languages have greater flexibility to model 
more complex systems. Based on the development of simulation applications, 
both users of simulation and developers of computer software realized that 
computer simulations have many common features, including generating values 



170

from probability distributions, maintaining a record of what happens during 
the simulation process, recording simulation data and finally summarizing the 
simulation results (Seitz and Ellison, 1999).

The Monte Carlo method, as it is known today, encompasses any statistical 
sampling technique employed to approximate solutions to quantitative prob-
lems. The first researcher who worked on this method was Ulam. His contribu-
tion was to recognize the potential of the newly invented electronic computer to 
automate such sampling. Ulam did not invent statistical sampling. It had been 
used to solve quantitative problems before, employing natural processes (such 
as dice tosses or card draws) in order to generate samples. Working with John 
von Neuman and Nicholas Metropolis, he developed algorithms for computer 
implementations and explored means of transforming non-random problems 
into random forms that would facilitate their solution via statistical sampling. 
This work transformed statistical sampling from a mathematical curiosity to a 
formal methodology, applicable to a wide variety of problems. It was Metropolis 
who named the new methodology after the casinos of Monte Carlo. Metropolis 
and Ulam published the first paper on the Monte Carlo method in 19492 (Seitz 
and Ellison, 1999).

The Monte Carlo technique, coupled with a simulation model, yields a 
simulation technique called Monte Carlo simulation. This technique randomly 
generates values for uncertain variables, over and over again, in order to simu-
late a model and is used for over two decades in capital investment analysis. 
Supported by appropriate software, computer spreadsheets (such as Microsoft 
Excel) can be easily transformed into Monte Carlo simulation models. Analyti-
cal results can be reached by employing suitable application software (such as 
Mathematica)3 to simplify the necessary calculations (Goyal et al., 1997).

3. Literature review

Capital investment evaluation methods are distinguished in the international 
literature between “naïve” and “sophisticated” (Pike, 1988). The former include 
mainly simple financial appraisal techniques, like payback or accounting rate of 
return, while the latter include scientific financial appraisal techniques, like dis-
counted cash flow methods (of which the internal rate of return and net present 
value methods are the best known), risk analysis techniques, like sensitivity 
analysis, probability analysis, scenario analysis etc., or management science 
techniques, like mathematical programming, computer simulation, decision 
theory etc. The next two paragraphs present and comment on some popular 
studies in investment evaluation under uncertainty. These studies are presented 
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in two separate groups, with the second group focusing to the studies using the 
Monte Carlo simulation method.

3.1  Studies using statistical techniques in risk analysis of capital 
investment projects

Hillier (1963) was the first one who proposed the use of probability distri-
bution of the present worth in project risk analyses. He showed that this prob-
ability distribution of the measure of the present worth (usually the Net Present 
Value, NPV) is normal and can be derived, under certain assumptions, from 
annual cash flows that are themselves random variables. He also presented 
equations for the NPV parameters (the mean value and the standard deviation) 
when the cash flows were mutually independent random variables and when the 
cash flows were perfectly correlated. Giaccotto (1984) tried to span the gap that 
existed in the literature when dealing with non-perfectly correlated cash flows 
in the context of capital budgeting risk-return analysis. Based on the work of 
Hillier, he introduced a new methodology that allows dependence in a project’s 
cash flows and found that the serial correlation of cash flows may affect the 
expected NPV of a project.

Eschenbach and Gimpel (1990) dealt with the uncertainty in engineering 
economic problems presenting a variation of traditional sensitivity analysis, 
called stochastic sensitivity analysis, a method with wide applications in math-
ematical modeling as well. This analysis includes probability data about the vari-
ables and isolates the effects and the relative importance of individual variables. 
The variables’ probability distributions are the input, as in simulation, while 
the output relates changing variables to changes in present worth (which is the 
model’s outcome), as in deterministic sensitivity analysis.

While simulation focuses on the present worth’s cumulative distribution 
function, Eschenbach and Gimpel while presenting stochastic sensitivity analy-
sis, described a probability metric that can be used to connect uncertainty in 
individual variables with uncertainty in present worth. The present worth for 
each variable was graphed against the variable’s cumulative distribution func-
tion. They defined the expected value of present information (EVPI) as the dif-
ference between the expected monetary value (EMV) of a decision when per-
fect information about the future state of nature is known, and the EMV with 
the information available at the time that the decision is made. They calculated 
the present worth’s conditional expected value and the EVPI for each variable, 
as well as the probability of breakeven. Consequently, the relative importance 
of each variable could be evaluated and compared, since all variables were 
graphed on the same x-axis.

Eschenbach and Gimpel demonstrated the application of stochastic sensi-
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tivity analysis with an example of an investment decision model for an electric 
power utility, which evaluates the construction of a hydroelectric dam to meet 
future growth in power demand by either hydroelectric power or gas-fired tur-
bine generation. The variables used in the model were dam construction cost, 
cost of gas turbine generation, discount rate and power demand growth rate.

3.2 Studies using Monte Carlo simulation in engineering economy problems

The implementation of Monte Carlo simulation in financial and investment 
analysis has been reported for over two decades. In the early 80’s, Coats and 
Chesser (1982) used Monte Carlo techniques along with classical financial 
statement analyses in order to produce useful statistical measures, such as prob-
abilities of occurrence, confidence intervals and standard deviations, in addition 
to standard financial reports. Later on, Seila and Banks (1990) simulated finan-
cial risk with Monte Carlo techniques, by exploring the probability distribution 
of the NPV of a project as a function of the unknown random input variables. 
As the performance measure of the model, that is the NPV, is also a random 
variable they tried to evaluate risk associated with decisions based on it, due to 
the uncertainty in its value. They applied Monte Carlo simulation in an elec-
tronic spreadsheet and illustrated the whole procedure with an example, using 
formulas to generate random values with the aid of LOTUS 1-2-3.

Alloway (1994) supported the applicability of electronic spreadsheets in 
engineering economic analysis. Classifying the related software into three cat-
egories; pre-written application software, custom-written software and produc-
tivity tools (a form which includes electronic spreadsheets), he characterized 
spreadsheets as “a hybrid between the two ends of the software spectrum” which 
incorporate the advantages of each approach while avoiding their disadvan-
tages. Comparing them with the other two approaches or with closed form 
solutions (like the expressions given in text books) he concluded that, electronic 
spreadsheets currently provide the greatest benefit/cost ratio. He also argued 
that spreadsheet advantages include wide applicability to almost every subject, 
low demands on time or training, low cost and minimum demands on solution 
or presentation time.

The modeling capability of a spreadsheet in complex economic engineering 
problems was demonstrated by Alloway with a Monte Carlo simulation exam-
ple, where the objective was to determine the expected present worth for an 
alternative investment when several cash flows were uncertain. The spreadsheet 
model consisted of four regions: i) the input area that showed the distribution 
and the parameter values for each cash flow type, ii) the simulation area that 
determined the present worth for each trial, iii) the summary information area 
that provided statistics used by the modeler to reach a decision and iv) the 
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random number generator area that provided the values used in the simulation 
section.

The present worth of the project was determined as a function of variable 
elements, including life, salvage, annual savings and expenses, whose values 
were based on the random numbers generated in the fourth region of the 
model. Each random cash flow was modeled separately and entered into a sin-
gle column. Each row in the spreadsheet represented one of the total 1.000 tri-
als executed in the simulation, modeled by using different versions of the Lotus 
1-2-3 software. The results of the simulation were evaluated graphically using 
a bar chart of the present worth for the 1.000 trials, since such kind of charts 
gives a better impression of the present worth’s distribution than the summary 
statistics. Additionally, the cumulative average present worth was plotted to 
determine if the simulation had reached steady-state with the 1.000 trials.

Apart from using later versions of the Lotus 1-2-3 software, Alloway also 
experimented with the use of add-in software, such as @RISK, in order to sim-
plify the initial simulation model. Comparing three different Lotus 1-2-3 models 
(Release 1.1, Release 4 and @RISK with DOS version 2.2) for 20 simulations 
of 1.000 trials each, he found no significant difference in the average present 
worth values.

Coates and Kuhl (2003), in a more recent paper, provided three simple 
examples demonstrating the ease with which engineering economy problems 
with stochastic input variables can be modeled using widely available industrial 
simulation software. In the examples they presented, the probability descrip-
tions of the random input variables, along with Monte Carlo techniques, provid-
ed a practical method of finding the distribution of the desired output variables, 
using simulation packages that can handle great amount of sampling data and 
have capabilities of good output report.

In their first example, they demonstrated the calculation of the future worth 
of an annual series of payments, represented by the NPV, where the interest 
rate varies from year to year. They assumed a stock market investment for the 
entire time period of the payments, with a stable long-term average return but 
individual annually returns normally distributed with a given standard deviation. 
The interest rates were selected via Monte Carlo sampling from the distribu-
tions. In the case of a fixed and known interest rate, the calculation of the future 
worth would be straightforward, through the classical NPV formula. They used 
the simulation software SLAM II instead, to estimate the NPV distribution for 
a great number of repetitions. From the reported summary statistics the range 
of the future worth was determined, while the standard future worth formula 
would only give a point estimate with no indication of the probable range.



174

The second example of their paper attempted to model the risk in the 
appraisal of an investment project, having uncertain, mutually independent, 
normally distributed, annual cash flows, as in Hillier’s (1963) initial example. 
Additionally, to make the problem more complicated, they allowed the interest 
rate to vary from year to year. An initial random starting value was assigned 
to the project’s interest rate of the first year. The rate of each subsequent year 
was generated by a first order autoregressive stochastic process, as in Giac-
cotto (1984). Moreover, the project life could vary from 4 to 6 years, with a 
given chance for each one of the three scenarios (4, 5 or 6 years). As shown in 
their example, the importance of including the variability of interest rates and 
project life in an investment appraisal problem was indicated by the fact that 
the probability of a negative NPV, in such a case, could rise substantially (even 
up to 10 times) than in a similar problem with uncertain yearly cash flows only. 
Moreover, even thought the mean NPV in both cases could be similar, or even 
the same, the standard deviation of the NPV distribution might double.

In their final example, Coates and Kuhl compared two mutually exclusive, 
alternative projects with different net expected cash flows, normal cash flow dis-
tributions and interest rate distributions like the one described in their second 
example. The comparison between the two projects was based on the difference 
in the expected Net Present Values of their investments. They applied a simu-
lation model on each alternative project, as the one described in the previous 
paragraph, obtained independent observations of the NPV for each one and as 
a result they constructed a confidence interval of the difference between the 
population means. Using common random numbers, they treated the corre-
sponding independent observations of the NPV from each project as matched 
pairs while constructing the confidence interval. After that, a point estimate of 
the mean difference in the NPVs of the two alternatives was calculated and a 
confidence interval of this mean difference was constructed. From the sign of 
the mean difference and the range of the confidence interval they concluded 
on which alternative would yield a higher return. Coates and Kuhl argued that 
since in most investment problems the decision maker will only have one oppor-
tunity to invest in any particular project, therefore a better analysis technique 
would be to construct a tolerance interval on the NPV difference for a single 
investment instead.

Perry (2006) presented an overview of the Design for Six Sigma process (a 
methodology that spans the entire product commercialization process from 
business idea development to initial product sales), utilizing specific applica-
tions of Monte Carlo simulation using Crystal Ball® software. Among others, 
he demonstrated how Monte Carlo simulation along with product optimization 
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techniques could be applied in business financial value analysis. Doing so, he 
presented a case study example of a new product design project. In his example 
a final financial analysis was necessary, at the last phase of the project, since 
an initial one, during the early stages, preceded. Once the primary variables 
of the initial financial analysis (sales volume, unit price, raw material unit cost, 
operating/other cost per unit etc) and their distribution assumptions (distribu-
tion type, mean value or standard deviation) were defined, a traditional finan-
cial analysis was carried out in order to determine the expected value of the 
project’s NPV. Having executed a Monte Carlo simulation and according to 
the distribution type of the estimated values, it was obvious that, although the 
project was expected to produce a positive NPV, it was not statistically certain. 
In this example, the simulation results indicated that there was a 20% chance of 
a negative NPV of the project, a possibility that should be taken under serious 
consideration despite of the positive expected NPV.

4. An application of Monte Carlo simulation: Investment appraisal 

4.1 The Net Present Value (NPV) Method in investment appraisal

The most common scientific method for investment evaluation is the Net 
Present Value (NPV) Method. In this paper we construct a Monte Carlo simu-
lation of the appraisal of a potential investment based on the investment’s NPV, 
using Excel spreadsheets and Visual Basic. In a potential investment project 
with uncertain annual revenues and costs, using the above software tools, we 
can randomly reproduce their values, estimate the annual cash flows and finally 
calculate its NPV, not just once but for a great number of trials. Doing so, 
we have the opportunity to statistically evaluate the results using a number of 
statistical modules provided by the Excel spreadsheets (Anderson et al, 1997). 
A sufficient number of repetitions should be executed, in order for the simula-
tion to provide reliable results in the appraisal of the potential investment. The 
fact that the revenues generated and the costs raised are not historical data but 
estimates of unknown quantities, should be taken seriously into account while 
applying the probability of occurrence to each value (Marsaglia and Zaman, 
1991).

4.2 Methodology

Variable Definition
First, we have to set the variables that will be used in our simulation. These 

variables are
• Revenues : the annual generated revenues from the investment
• Costs : the annual out coming costs of the investment
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• Years : the number of years that the investment lasts
• Random (Rn) : the random numbers used in the simulation
• Times : the number of trials executed by the simulation
Construction of the Simulation and Visual Basic modules used
In order to construct the simulation required for the appraisal of the 

potential investment, we use the Visual Basic language. Visual Basic is a tool, 
provided by the Excel spreadsheets, that enables us to use simple commands 
to program the simulation. For the Revenues generated from the investment, 
we use the module: «Dim Revenue, Years, Rn, Times», setting the variables that 
will be used in our simulation. Having the variables defined, we set the years 
of the investment’s life. If, for example, we want to set five years, the module 
that we have to use is the following: «For Years = 2 to 6». The numbers 2 to 6 
correspond to the columns of the Excel spreadsheet that will be used to place 
the values for each one of the five years. The next step is to decide how many 
trials we wish the simulation to execute. In order to do that, lets say for 201 tri-
als, we use the module: «For Times = 15 to 215». This time the numbers 15 to 
215 correspond to the rows that the Excel spreadsheet will use to place the 201 
trials of the simulation.

After that, we have to command the simulation to select randomly a value 
for each years’ Revenues according to a given range of probabilities. To do that 
we first create a box in the Excel spreadsheet listing all the probabilities (both 
separately and cumulatively) and the values of the Revenues which correspond 
to each probability. The module in the Visual Basic is: «If Rn<Range(“X”) Then 
Revenue = Range(“Y”)», where “X” is the cell with the cumulative probability 
and “Y” is the cell with the Revenues’ value corresponding to the probability. 
The factor “Range” is used in order to make the simulation user - friendly and 
enable a manager, changing the probabilities and the Revenues’ values, to run 
the simulation for different investment options (Castillo-Ramirez, 2000).

The modules’ list used to create the simulation for Revenues is the following 
(Deitel et al, 1999)

Sub Nikolaos()
Dim Revenue, Years, Rn, Times
For Years = 2 To 6
For Times = 15 To 215
Rn = Rnd()
If Rn < Range(“D3”) Then Revenue = Range(“E3”)
 If Rn >= Range(“D3”) And Rn < Range(“D4”) Then Revenue = 
Range(“E4”)
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 If Rn > = Range(“D4”) And Rn < Range(“D5”) Then Revenue = 
Range(“E5”)
 If Rn >= Range(“D5”) And Rn < Range(“D6”) Then Revenue = 
Range(“E6”)
Cells(Times, Years) = Revenue
Next
Next
Nikolaos 1
End Sub
Exactly the same way we construct the simulation for the Costs that the 

investment will arise. The last module used in Visual Basic enables the user of 
the simulation to exit the program by just pushing one button. This module is 
(Deitel et al., 1999)

Sub Exitprog ()
Active Workbook. Close
End Sub

4.3 Analysis

Running the Simulation
After the construction of the simulation we can proceed to the analysis. First, 

we estimate each year’s Cash Flows, according to the values of Revenues and 
Costs chosen randomly from the simulation abstracting Costs from Revenues. 
Estimating the Cash Flows for each one of the five years, we can very easily cal-
culate the investment’s NPV using the respective formula provided by the Excel 
spreadsheets. A useful function of the simulation is the «Run Simulation Rev-
enue/Cost» button which enables the user to run the simulation automatically.

Statistical Modules
Having the simulation executed, we can evaluate various statistical modules 

very useful in the interpretation of the results. The statistical figures evaluated 
are the Minimin, Maximax, Median, Mean and Standard Deviation. The popula-
tion used for the calculation of these figures is the NPVs. Minimin is the mini-
mum value of the population while Maximax is the maximum. The Median is 
defined as the score in a population that divides it into two equal parts; it is 
the middle score of a set of scores ranged in ascending order. The Mean is the 
measure of the central tendency that most of us recall when we hear the term 
«average». It is simply the arithmetic average of a distribution of scores. If the 
Mean and the Median in a population have similar values, then the distribution 
of the population approximates the normal one. Finally, the Standard Devia-
tion is a measure of dispersion of the distribution and describes the typical or 
average deviation of the scores around their Mean (Walsh, 1990).
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5. A numerical example

In the last section of the paper, a hypothetical example will be presented 
to introduce a simulation model as a valuable technique in the appraisal of an 
investment project whose cash flows are non-deterministic variables. In the 
process we demonstrate how risk analysis provides the basis for the decision to 
accept or reject a potential investment.

5.1 Data

Supposing a 5-year investment project with an initial outflow of €40.000,00 
at the beginning of the 5-year period. We assume that for each one of the 5 
years, the revenues generated by the investment may vary from €40.000,00 to 
€60.000,00, following a distribution approximating the normal one. Transform-
ing this fact to probabilities, we choose four discrete values of revenues and 
apply a probability of occurrence to each value, as shown to the list bellow. The 
same way, each year’s costs may vary from €25.000,00 to €40.000,00 following 
again a normal distribution; consequently, we consider four different values of 
costs as well as their probability of occurrence, which are presented in the same 
list.

Year Outflow (€) Revenues (€) Probability Costs (€) Probability 

0 40.000 - - - -

1 to 5

40.000 15% 25.000 10% 

- 50.000 40% 30.000 25% 

55.000 30% 35.000 35% 

60.000 15% 40.000 30% 

The final step is to set the NPV rate. We expect from the investment project 
an at least 12% rate of return, therefore the NPV rate in the calculations for the 
estimation of the investment’s NPV will be 0,12.

5.2 Analyses and interpretation of results

Having all the data of the example defined, we can proceed to the simula-
tion. In this example we set the simulation to execute 200 trials, meaning to 
select from the previous list, for each one of the 5 years of the investment, 
200 values for revenues and costs, in random order. The first 15 values of 
revenues and costs, for the 5 years respectively, are presented in the follow-
ing Table 1:
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TABLE 1

SIMULATION of “REVENUES” and “COSTS”

REVENUE COST

200- 
Times 

Year Year Year Year Year Year Year Year Year Year 

1 2 3 4 5 1 2 3 4 5 

1st 55000 50000 50000 50000 50000 40000 25000 30000 40000 30000 

2nd 50000 55000 50000 50000 55000 35000 40000 35000 40000 25000 

3rd 55000 50000 55000 55000 55000 40000 40000 35000 40000 30000 

4th 50000 50000 40000 50000 50000 30000 25000 30000 40000 35000 

5th 50000 50000 50000 50000 55000 25000 35000 40000 35000 40000 

6th 55000 55000 55000 55000 55000 40000 40000 40000 40000 35000 

7th 40000 50000 50000 55000 60000 35000 30000 35000 35000 40000 

8th 55000 50000 50000 40000 60000 40000 35000 25000 35000 40000 

9th 55000 50000 60000 40000 50000 40000 35000 35000 40000 35000 

10th 55000 50000 50000 55000 55000 40000 40000 25000 40000 40000 

11th 40000 55000 40000 55000 55000 40000 30000 35000 35000 40000 

12th 50000 50000 50000 55000 50000 25000 40000 40000 35000 30000 

13th 60000 55000 50000 50000 55000 40000 35000 35000 30000 30000 

14th 55000 60000 55000 50000 50000 30000 30000 25000 35000 35000 

15th 50000 50000 60000 50000 50000 30000 25000 35000 30000 40000 

According to these values, the simulation calculates each year’s cash flow 
and the investment’s NPV, for 200 trials. Again, the first 15 results are pre-
sented in the following Table 2.
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TABLE 2

ESTIMATION of “CASH FLOWS” and “NET PRESENT VALUE”

CASHFLOW

Year 
1 

Year 
2 

Year 
3 

Year 
4 

Year 
5 

NPV 

15000 25000 20000 10000 20000 £25.262,03 

15000 15000 15000 10000 30000 £19.405,46 

15000 10000 20000 15000 25000 £19.318,84 

20000 25000 10000 10000 15000 £19.771,38 

25000 15000 10000 15000 15000 £19.441,31 

15000 15000 15000 15000 20000 £16.908,78 

5000 20000 15000 20000 20000 £15.143,77 

15000 15000 25000 5000 20000 £17.671,40 

15000 15000 25000 0 15000 £11.656,67 

15000 10000 25000 15000 15000 £17.203,48 

0 25000 5000 20000 15000 £4.710,51 

25000 10000 10000 20000 20000 £21.470,07 

20000 20000 15000 20000 25000 £31.373,76 

25000 30000 30000 15000 15000 £45.634,83 

20000 25000 25000 20000 10000 £33.966,13 

Since the 200 NPVs have been calculated we perform the statistical analysis 
of the results estimating the Mean, the Median, the Standard Deviation and 
various characteristic Tolerance Intervals of the NPV population. The overall 
results of the analysis are reported in Table 3.

TABLE 3

OVERALL RESULTS
REVENUE COST
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NPV rate Pr
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 €

0,15 0,15 40.000 € 0,12 0.10 0.10 25 000 €
0,40 0,55 50.000 € 0,25 0,35 30 000 €
0,30 0,85 55.000 € Maximax Minimin Median St Dev Mean 0,35 0,70 35.000 €
0,15 1,00 60 000 € 52.519,57 € -2793,01 € 22.338,28 11995,79 22 117,77 € 0,30 1,00 40.000 €

According to these results, the Mean of the NPV population is €22.177,77 
and the Median €22.338.28, a fact that proves that our population follows the 
Normal Distribution. Since the distribution is normal we can easily perform 
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a statistical analysis of the results, using the Standard Deviation. In a Normal 
Distribution, exactly 68,26% of the total area of the values falls between ±one 
Standard Deviation from the Mean. Since in our case the Standard Deviation is 
€11.995,79 (see Table 3) the range of the NPV will be €10.121.98 to €34.113,56, 
with approximately 68% accuracy. In other words, 68 times out of 100, the NPV 
of the investment will be greater than €10.121,98 and smaller than €34.113,56. 
Furthermore, exactly 95,44% of the total area of the values falls between ±two 
Standard Deviations from the Mean, so in our example the range of the NPV 
of the investment will be €-1.873,81 to €46.109,35 in 95% of the cases. This 
result states that if we want to broaden the tolerance interval to 95%, there is 
indeed a slight chance the investment’s NPV to be negative, so the investment 
should be rejected. However, if we accept a little smaller tolerance interval, the 
NPV will take only positive, or close to zero, scores so we can conclude that in 
approximately 90% of the cases the investment should be undertaken.

5.3 Cumulative Results and Conclusions

Obviously, every time we run the simulation slightly different results will 
come out because the random values of revenues and costs will differ. Nev-
ertheless, these results appear to be, more or less, the same with those shown 
in Table 3. The cumulative results for four more runs (together with the ones 
of the first case), both the 68% and the 95% tolerance interval included, are 
summed in Table 4.

TABLE 4

CUMULATIVE RESULTS

Statistics  Results

Variance with 1 standard 
deviation (68% accuracy)

Variance with 2 standard 
deviation (95% accuracy)  First Run

Maximax 52.519,57 €
Minimin -2.793,01 €
Median 22.338,28 €
StDev 11.995,79 €

34.173,56 € 10.181,98 € -1.813,81 € 46.169,35 €
Mean 22.177,77 €

Statistics  Results

Variance with 1 standard 
deviation (68% accuracy)

Variance with 2 standard 
deviation (95% accuracy) Second Run

Maximax 63.669,10 €
Minimin -1.984,63 €
Median 24.026,58 €
StDev 12.732,33 €

36.731,63 € 11.266,97 € -1.465,36 € 49.463,96 €
Mean 23.999,30 €
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Statistics  Results

Variance with 1 standard 
deviation (68% accuracy)

Variance with 2 standard 
deviation (95% accuracy) Third Run

Maximax 52.051,15 €
Minimin -13.643,43 €
Median 22.271,96 €
StDev 12.345,34 €

34.204,39 € 9.513,71 € -2.831,63 € 46.549,73 €
Mean 21.859,05 €

Statistics  Results

Variance with 1 standard 
deviation (68% accuracy)

Variance with 2 standard 
deviation (95% accuracy) Fourth Run

Maximax 60.501,41 €
Minimin -17.547,69 €
Median 22.358,57 €
StDev 12.633,70 €

35.168,98 € 9.901,58 € -2.732,12 € 47.802,68 €
Mean 22.535,28 €

Statistics  Results

Variance with 1 standard 
deviation (68% accuracy)

Variance with 2 standard 
deviation (95% accuracy) Fifth Run

Maximax 56.037,12 €
Minimin -22.794,89 €
Median 21.373,06 €
StDev 12.471,83 €

33.179,98 € 8.236,32 € -4.235,51 € 45.651,81 €
Mean 20.708,15 €

According to these values, in the 68% tolerance interval, the NPV takes only 
positive values, in all cases. However, the results show that when the tolerance 
interval increases to 95%, the NPV can take slightly negative values, with a 
minimum value of €-4.235,51, in the fifth run. Taking into account the results 
from all five runs, we can conclude that the investment in question is worthwhile 
to be undertaken since, with approximately 90% accuracy, the investment will 
return positive Net Present Value.
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Notes

1. An earlier version of the paper was presented in the 6th Annual International Conference 
of the European Economic and Finance Society (EEFS), 31st May - 3rd June 2007, Sofia, 
Bulgaria, under the title: “Construction of a Spreadsheet Model using Monte Carlo Simulation 
for the Appraisal of a Potential Investment”

2. Metropolis, N. and Ulam, S. (1949) “The Monte Carlo method”, Journal of the American 
Statistical Association, Volume 44

3. Wolfram, S. (1991), Mathematica: A System for doing Mathematics by Computer, 2nd ed., 
Addison Wesley, New York, New York.



183

References

Alloway, J.A.Jr. (1994), Spreadsheets: Enhancing Learning and Application of Engineering 
Economy Techniques, The Engineering Economist, 39(3): 263-274.

Anderson, R.D., Sweeney, J.D. and Williams, A.T. (1997), An Introduction to Management 
Science. Quantitative Approaches to Decision Making, 8th Edition, West Publishing Company, 
p. 115-142 and 536-557.

Castillo-Ramirez, A. (2000), An Application of Natural Resource Evaluation Using a Simulation-
Dynamic Programming Approach, Journal of Computational Finance, Winter 1999/2000, 
3(2): 91-107.

Coates, E.R. and Kuhl, Μ.Ε. (2003), Using simulation software to solve engineering economy 
problems, Computers & Industrial Engineering, 45: 285-294.

Coats, P.K. and Chesser, D.L. (1982), Coping with business risk through probabilistic financial 
statements, Simulation, June: 111-121.

Deitel, H., Deitel, P. and Nieto, T. (1999), Visual Basic: How to Program, Prentice Hall, USA.

Eschenbach T.G. and Gimpel R.J. (1990), Stochastic Sensitivity Analysis, The Engineering 
Economist, 35(4): 305-321. 

Giacccotto, C. (1984), A simplified approach to risk analysis in capital budgeting with serially 
correlated cash flows, The Engineering Economist, 29(4): 273-286. 

Goyal, A.K., Tien J.M. and Voss P.A. (1997), Integrating Uncertainty Considerations in Learning 
Engineering Economy, The Engineering Economist, 42(3): 249-257. 

Hillier, F.S. (1963), The derivation of probabilistic information for the evaluation of risky 
investments, Management Science, 443-457. 

Ho, S.M. and Pike R.H. (1998), Organizational Characteristics Influencing the Use of Risk 
Analysis in Strategic Capital Investments, The Engineering Economist, 43(3): 247-268. 

Marsaglia, G. and Zaman, A. (1991), A new class of random number generators, Annals of 
Applied Probability, 1:462-480. 

Perry, R. (2006), Monte Carlo Simulation in Design for Six Sigma, Proceedings of the 2006 Crystal 
Ball User Conference. 

Pike, R.H. (1988), An Empirical Study of the Adoption of Sophisticated Capital Budgeting Practices 
and Decision-making Effectiveness, Accounting and Business Research, 18(72): 341-351. 

Pike, R.H. (1989), Do Sophisticated Capital Budgeting Approaches Improve Investment 
Decision-making Effectiveness?, The Engineering Economist, 34(2): 149-161.

Seila, A. F. and Banks, J. (1990), Spreadsheet risk analysis using simulation, Simulation, 57: 163-170. 

Seitz, N. and Ellison, M. (1999), Capital Budgeting and Long-Term Financing Decisions, 3rd 
Edition, USA: Harcourt Brace College Publishers. 

Walsh, A. (1990), Statistics for the Social Sciences with Computer Applications, New York: Harper 
& Row Publishers, Chapters 3-4.




