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Abstract 
 

Although rarely available ports produce a polymorphic set of timely available monthly import, export, 
transport and labor utilization series, providing frequent snapshots of freight volumes either as being 
transferred between modes, or trans-shipped to secondary destinations. Utilizing monthly inflows and 
outflows of several cargo types as well as cruise passenger volumes from U.S ports, we: a) 
demonstrate the potential and the added value of information carried by common factors shaped by 
ports with respect to outlining the underlying forces of a national economy and b) provide competitive 
forecasts of disaggregate trade series from single ports (such as, e.g. outgoing or incoming TEUs) by 
exploiting factor dynamics, We test this concept in the context of Forni et al. (2005) one-sided 
generalized dynamic factor model, exploring the links between ports and the driving factors of the 
U.S. economy, as these are captured through its common and idiosyncratic components. Our model, 
employing 192 series from 31 major port complexes -covering 84.4% of TEUs and 60.1% of the dry 
bulk volume between 2005 and 2012-, displays a promising forecasting performance for individual 
ports and aggregate economic indicators versus benchmark models at 4-7 months ahead and explains 
a high fraction of the US GDP and Industrial Production indices variance.  
 
Keywords: dynamic factor models, U.S ports, trade, forecasting 
JEL Classification: C38, F47, L99 
 
 
 
1. Introduction 
The research field of port services in general and port economics in particular, is constantly 
growing in the last 15 years; the main reasons behind this growth include efficiency 
requirements, management of operational complexity, and the evolution of governance 
structures and ownership schemes. Seaports constitute an integral part of transportation and 
their investments are affecting the allocation of transfer capacity (Chlomoudis and Pallis 
1996, 1997). For any given domestic or international trade route, as long as waterborne 
transportation is more efficient or effective than other modes, ports will be a less replaceable 
part of the supply chain, since they are more likely to be competed by other ports than by 
other modes. Although no formal reporting process exists for U.S ports (National 
Cooperative Freight Research Program. 2014. p.126), they can produce a plethora of timely 
available monthly import, export, transport, port labor utilization series, as well as passenger 
volumes, providing frequent snapshots of freight volumes either as being transferred between 
modes, or trans-shipped to secondary destinations. Port passenger and trade flows, depending 
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on geography, represent an interface where national and international production inputs / 
outputs and transportation, meet. Our intention in this exercise is to shift the point of view 
from the service industry aspect of ports, bilateral or multilateral trade issues, or economic 
interpretation of aggregate trade or transport indexes, in order to outline their properties as 
regional and global facilitators between demand and supply and demonstrate their capacity 
for reflecting national economic activity and forecasting. Following the emergence of the U.S 
transportation sector (Lahiri, 2010) as one of bearing coincident and leading added value 
related to the national U.S. economy and given the importance of the port sector for national 
transportation, production, and international trade flows, it is worth exploring possible 
relationships and co-movements of previously unexploited monthly port inputs and outputs 
both with each other, as well as with aggregate economic indexes.  
The current study attempts to contribute to the convergence of contemporary port literature 
and factor analysis of economic fluctuations in the context of a national economy, as well as 
macroeconomic and operational forecasting: By utilizing a large national port dataset from 
the U.S., we evaluate forecasts of macroeconomic variables, using ports as instruments, and 
forecasts of individual ports, using the rest of the ports as instruments. This is an exercise 
well suited for a factor model, which main input are large co-moving datasets, with the 
outputs being a limited number of factors. 
The reduction of dimensionality achieved by a small number of common factors facilitates 
the assessment of co-movements of large cross-sections in the economy and exploits its 
common components for forecasting, has been demonstrated by various applications of 
macroeconomic factor models on a national or even multi-national level the last 15 years. 
Therefore, the idea of extending this concept to a sector-specific polymorphic set of 
disaggregate data is both technically feasible, as well as plausible. To our knowledge this is 
the first application of a large-scale generalized dynamic factor model assessing information 
originating from the U.S port sector, and the second, after Reijer (2007), that deals with 
exclusively disaggregate data from any sector on a national level. Utilizing monthly inflows 
and outflows of several cargo types, port employment and cruise passenger volumes from the 
majority of U.S ports, we cover 84.4% of TEUs and 60.1% of the dry bulk volume from 2005 
to 2012, and for the first time a) we demonstrate the close co-movement of disaggregate port 
series with the drivers of the U.S economy and b) we provide evidence for their forecasting 
capabilities with respect to individual ports, specific cargo types, cruise passengers, port 
workforce requirements and aggregate economic indicators.  
In principle, disaggregate data can be characterized as driven mainly by idiosyncratic 
disturbances and present a more volatile nature. But the possibility that aggregation may 
cancel out opposite trends or dampen converse co-movements cannot be ruled out. Using the 
same argument, the possibility of useful information being present only in partially or fully 
disaggregate data cannot be ruled out either. By utilizing the same econometric methods and 
theoretical background we are able to explore the answers to two questions: a) what is the 
potential and the added value of information carried by common factors shaped by ports with 
respect to outlining the underlying forces of a national economy.  
b) whether we can provide reliable forecasts of disaggregate trade, passenger and workforce 
utilization series from single ports (such as, e.g. outgoing or incoming TEUs), by exploiting 
factor dynamics shaped from all other ports, and  
In the next section we provide background information about relevant literature and we 
explain the methodology utilized. In section 3 we discuss factor model parameter selection, 
documenting our parameter choices; in section 4 we discuss port panel dynamics and 
compare forecasts of our model vs. benchmarks and in section 5 we summarize our main 
findings.  
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2. Background 
Factor models, in general, are tools to facilitate parsimonious representation of large cross 
sections of time series by a small number of exogenous common shocks shared by panel 
series, which can be used also for forecasting. They are utilized as non-structural models and 
macroeconomic forecasting tools by central banks, governments and academia. Major 
developments of factor models in economic applications in the last 15 years can be found in 
Stock and Watson (2002) and Forni et al. (2000), refining the concepts of so-called static 
factor and two-sided dynamic factor models respectively and detailing their application in 
economic series. Several enhancements and alternatives were proposed, most notably Forni et 
al., (2005), Kapetanios and Marcellino (2006) and Doz et al., (2011) utilizing one-sided 
filtering, state-space methods and the Kalman filter respectively. A comprehensive review 
can be found in Stock and Watson (2011). Applications on a national economy level followed 
shortly after Stock and Watson (2002) and Forni et al. (2000); Notable examples of dynamic 
or static implementations include Schumacher and Dreger (2002), Nieuwenhuyze (2006), 
Banerjee and Marcellino (2006), Carriero and Marcellino (2007), Cheung and Demers 
(2007), Reijer (2007), Ajevskis and Dāvidsons (2008), Nguiffo-Boyom (2008), Barhoumi et 
al., (2010) for Germany, Belgium, U.S, U.K, Canada, Netherlands, Latvia, Luxemburg and 
France respectively. Factor models have been also utilized in a multi-national scale context in 
Altissimo et al., (2001) and Forni et al., (2001) for the Euro Area, Al-Hassan (2009) for the 
Gulf Cooperation Council and Guichard and Rusticelli (2011) for international trade growth. 
In most of the applications cited above, as well as in Barhoumi et al., 2010 and Schumacher 
(2007), dynamic and static factor models outperform naïve and autoregressive models in 
GDP forecasting; furthermore, depending on dataset attributes and forecast horizons, they 
display similar forecasting performance. Assessing the methodological differences between 
static and dynamic approaches, as well as comparing their forecasting accuracy is outside the 
scope of the current work. For this exercise we will utilize the Forni et al., (2005) one-sided 
generalized dynamic factor model, GDFM hereafter, mostly for its useful capability for 
assessing leads and lags between variables, enabling us to set macroeconomic variables as 
reference series for the U.S port sector. 

The intuition that disaggregate trade data may be applicable for forecasting economic 
variables is not new. Perevalov and Meier (2010), focusing on U.S GDP forecasting with 
factor models, concluded that ‘the largest improvements in terms of forecasting accuracy are 
found for relatively more volatile series, with the greatest gains coming from improvements 
of the forecasts for investment and trade’. In Altissimo et al., (2001) it is stated that shocks 
originating from a local or sectoral source generate dynamics that should be monitored by 
local or sectoral policy makers. In relation to the scope of this exercise, with the exception of 
Tsamourgelis et al., (2013), the link between trade and the economy has also been explored in 
the past, but not through a disaggregate polymorphic port set. In the context of bilateral trade 
we note Aruoba et al., (2010), which concludes that extent of synchronization between 
countries in the ’00s has not changed since the 1970-1980 period despite the increase in 
global trade and financial linkages, as well as the robust correlation of business cycles and 
bilateral trade between two countries, assessed in Baxter and Kouparitsas (2004). We also 
find a useful stream of work about the U.S transportation services index (TSI) summarized in 
Lahiri (2010), where the potential predicative quality of freight transport is elaborated, and its 
closely connection with inventories is highlighted.  

In GDFM, variable dynamics are virtually split into two mutually orthogonal components: a) 
the common component, a linear combination of all factors shared by each of the panel series 
with a varying degree of commonality and b) the idiosyncratic component, comprised of 
series-specific factors, disturbances and measurement errors. The observations in the 
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generalized principal components are weighted based on their signal to noise ratio. The first 
step involves the calculation of the spectral density matrixes (frequency domain) and the 
autocovariances (time domain) for the common and idiosyncratic components. The second 
step includes the computation of the linear combinations that maximizes the 
contemporaneous covariance induced by the common factors. More specifically, the GDFM 
is estimated as follows:  

NtX  is defined as a panel of N series with Tt ,...2,1= observations. The process tX  is the 
sum of two unobservable components, the common factors tχ  (alternatively referred to as 
common or primitive shocks) and the idiosyncratic factors tξ , alternatively ttt FX ξχ += )( , 
where tF is the lag operator for Nq >>  common factors. )( tFχ is a two-sided filter of tX , 
implying a deterioration of forecasts as Tt → . 

To circumvent this shortcoming, Forni et al., (2005) utilized the frequency domain by 
estimating the spectral density matrix, applied dynamic principal components analysis, and 
then reverted back to the time domain by inverse Fourier transform. Then, using the spectral 
density matrices, the covariance matrices for the common and idiosyncratic components are 
obtained for all leads and lags, smoothed over M frequencies, using generalized principal 
components. Finally, the estimated common components are projected orthogonally by the 
static factors. They represent the r contemporaneous linear combinations of xt with the 
lowest idiosyncratic to common variance ratio and they reflect the degree of heterogeneity 
with respect to the reaction (impulse response) of each common factor. Utilizing the GDFM 
we can assess the extent of the variance explained by the variance of its common component: 

NtX  is explained by the variance χ
NkΓ  of its common component tχ  and ξ

NkΓ  the variance of 
its idiosyncratic component tξ . The total panel variance T

NkΓ is defined as: 

])([ Τ
−ΝΝ=Γ ktt

T
Nk XXE                  (1) 

where k are the number of lags, and Τ(.) denotes transposition. 

We compute autocovariance matrices (sample covariance) of order k ( k− ,...,0,..., k ), defined 
by: 

∑
+=

Τ−−=Γ
T

kt
NtNt

T
Nk XXkT

1

1 )()( .                 (2) 

The spectral density matrix, over kw Bartlett-lag windows 
1+

=
M

k
wk , is estimated by the 

Fourier transform: 
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M
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T
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where 
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2
+Μ

=
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s , MMMs ,...1, +−= , M is an integer, )(TMM = .  

The next step involves the decomposition of )( sθ
Τ
ΝΣ into )( sθ

χΤ
ΝΣ and )( sθ

ξΤ
ΝΣ by applying 

dynamic principle component analysis (Brillinger, 1981, ch. 9), essentially by computing the 
T

N
χΣ  matrices, but using only the first q  dynamic factors:  
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where ( )θλT
Nq  denotes the largest eigenvalue of T

N
χΣ , T

Nqp is the largest eigenvector and 
*(.) denotes conjugate transpose.  

We will later assess the steps of choosing the ‘right’ number of q  and M . We then revert 
into the time domain utilizing the inverse Fourier transform:  

∑
−=

− Σ+=Γ
M

Mh

ki
s

T
N

T
Nh

seM θχχ θ )()12( 1 .                    (5) 

For each static factor r , the variance of the idiosyncratic factors is the residual variance, if we 
deduct the variance of tχ at 0=M : T

j
T
j

T
j

χξ
000 Γ−Γ=Γ , where ],...,2,1[ rj∈ . For reference, in the 

empirical application of Forni et al. (2005), a range of 6 to 15 static factors is utilized.  
Finally, the step of calculating the generalized principle components Th

NK  is performed as 
follows: Denoting T

NjZ as the generalized eigenvectors matrix for T
j
χ
0Γ , T

j
ξ
0Γ and multiplying 

T
Nh
χΓ  with Τ−ΤΓ )())(( 1

0
T
N

T
N

T
j

T
N

T
N ZZZZ , we obtain matrix Th

NK , which in turn we use for 
projecting from the common factors: 

∑
=

+ =
N

j
jT

Th
ijN

NT
ThTi xK

1
,|,χ                       (6)  

where h  is the number of step-ahead forecast periods. 
As we will show in the following sections, the diversity of our dataset allows for the 
exploitation of its theoretical advantages, which include the heterogeneity in the fraction of 
total variance explained by the idiosyncratic components, as well as diversity between the lag 
structure of the factor loadings, i.e. presence of dynamics. Another advantage of the GDFM is 
ability to classify of individual variables to leading, coincident and lagging with respect to 
reference variables at any frequency, most notably the business cycle frequency. The 
majority, at least of the earlier literature applications included panels of quarterly data. In 
Marcellino (2006), it is stated that high quality monthly data are a requirement. 
 
3. Data Set, Treatment and Model Parameter Selection 
In this section we describe the port dataset, its treatment (deseasonalization outlier removal 
and standardization), before applying the model and our approach in determining the number 
of dynamic and static factors, as well as the auxiliary parameters required for implementing 
the dynamic factor model. 
We utilize a panel spanning from January 2005 to March 2012, covering 192 monthly series 
from 31 U.S. ports and port complexes. These include: Anacortes, Baltimore, Benicia, 
Canaveral, Crockett, Corpus Christi, Everglades, Hampton Roads, Hueneme, Huston, 
Kalama, Long Beach, Los Angeles, Miami, Morehead, New York, North Bend / Coos Bay, 
Oakland, Portland, Redwood City, San Diego, Savannah, Seattle, South Louisiana Stockton, 
Tacoma, Tampa, Wilmington, and Vancouver. From each port, we utilized all publicly 
reported series on a monthly basis; these include imported and exported TEUs and / or 
container-tones, total throughput, dry bulk, general cargo, number of auto units, roll-on roll-
off tones, liquid cargo, petroleum, grains, lumber, steel and others, excluding only series 
containing an extensive number of missing values.  Regarding port workforce series, we 
utilized weekly shifts from several categories for the ports of Long Beach and Los Angeles 
(combined) and from Hueneme port.  
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The U.S port dataset described covers up to 84.4% of TEUs and 60.1% of the dry bulk 
volume of 2012. We have added two proprietary series, namely a) the sum of all available 
imported TEUs and b) the sum of all available incoming and outgoing container-tones, 
designated C1. Imp. TEUs and C2. We also included popular indexes related to freight and 
transportation, such as the Baltic Dry Index (incorporating the demand side of the 
international dimension of trade), TSI, TSI (freight), TSI (passengers), and the Cass US 
Freight Export and Shipments indexes. Finally, apart from the GDP, which we converted to 
monthly frequency by using cubic spline interpolation, we chose to include in the dataset 
three national economic indexes: Industrial Production (IP), IP: Manufacturing and IP: 
Materials, in order to evaluate their potential as reference variables. Our first priority has 
been to maximize the number of series included, sacrificing potential information that could 
be introduced by a longer panel. We chose to keep the number of external series low, in order 
a) to limit, to the maximum possible extent, their contribution to the factor model and, b) to 
reduce the number of series that we would have to obtain temporary forecasts, in the context 
of a real forecasting exercise. Sources of our dataset include websites of individual U.S. 
ports, port authorities, Maritime Administration (MarAd) for the cruise passenger series, the 
Pacific Maritime Association for port workforce shifts and the Saint Louis FED for the 
economic series, TSI and Cass indexes. 
With respect to preliminary data treatment, we removed seasonality and corrected outliers 
using TRAMO described in Gomez and Maravall (1996), we took log differences for all 
series to obtain month-to-month growth rates and we mean-standardized the data. As 
suggested by Altissimo et al. (2001) we did not use SEATS in order to avoid using bilateral 
filters, since this would introduce revision requirements.  
One of the first steps in assessing dynamic factor models is determining the number of 
dynamic and static factors, as well as auxiliary model parameters. For the former two, we 
utilized the criteria of Hallin and Liška (2008) and the Alessi et al., (2010) respectively and 
we cross-checked the results with the heuristic approach of Forni et al., (2000). The results 
varied between 1 and 3 factors. We also noticed that the majority of the Hallin and Liška 
(2008) trials pointed to 2, and marginally 3 dynamic factors when we used ‘shallow’ 
subpanel runs (from 90% to 95% of the panel size), When a larger number of subpanels were 
selected, the results tended to point to one factor. Banerjee and Marcellino (2006), 
recommend the number of factors used in the model should be either equal or larger than the 
‘true’ number, so we chose 2 dynamic factors for our core scenario runs. The choice of the 
lag window M  also affected the number of factors. With )75.0( 75.0TroundM = the 
information criterion pointed to 2-3 factors, while with )5.0( 5.0TroundM = , to one. 
Nevertheless, the as we will show, the results are quite robust to the number of dynamic 
factors. For the number of static factors we utilize a range between 7 and 11 factors. In our 
core scenario, we use 9 static factors, where we obtained the –averaged among forecasting 
horizons- results. With respect to the number of series included in the panel, we opted for 
keeping them all, since by removing noisy series with low commonality ratios and high 
idiosyncratic variance we observed a drop in forecasting performance; a result in line with 
Nieuwenhuyze (2006). We assume this could be a possible side-effect of disaggregate data: 
Even though the relevance of a noisy series (e.g. from a small port) to the factor model can be 
low, its contribution contains unique information exploitable for forecasting. Also, as per 
Reijer (2005) the distinction between oversampling effects and noisy data, can be difficult.  
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4. Results, forecasts and discussion 

4.1 Panel Dynamics and Model Results 

In this section we assess the dynamics of our dataset; we evaluate the commonality of major 
variables, as well as the lead / lag relationship between port and macroeconomic series. 
As suggested by D’Agostino and Giannone (2007), we firstly assess the difference between 
the number of static and dynamic factors1 (as calculated by principal components and 
dynamic principal components respectively), required to capture more than 50% of the panel 
variance, as an indication of its dynamics and internal lead-lag structure. We then apply the 
GDFM and review the distribution of the idiosyncratic component variance. 
Although the U.S data set in D’Agostino and Giannone (2007) – almost identical to the Stock 
and Watson (2002) one- is comprised of a large number of aggregate economic variables, real 
and nominal, asset prices, the yield curve, surveys and other, we report similar findings: The 
U.S port sector dataset shows enhanced dynamics and a rich lead-lag structure. More than 14 
static factors are required to describe 50% of the panel variance, explained by 4 dynamic 
factors. We consider this result as unexpected; albeit useful for documenting phase-difference 
information carried by our port trade dataset. 

Table 1 
Variance explained by principal components 

n. of factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

static 0.08 0.13 0.18 0.22 0.25 0.29 0.32 0.35 0.38 0.41 0.43 0.45 0.48 0.50 0.52 

dynamic 0.22 0.36 0.46 0.56 0.64 0.70 0.76 0.80 0.84 0.87 0.89 0.91 0.92 0.93 0.94 

dynamic(b) 0.14 0.24 0.32 0.39 0.45 0.50 0.55 0.59 0.63 0.67 0.70 0.73 0.76 0.79 0.81 

 
Table 2 

Distribution of idiosyncratic variance 
Variance range (.0-.1) (.1-.2) (.2-.3) (.3-.4) (.4-.5) (.5-.6) (.6-.7) (.7-.8) (.8-.9) (.9-1) 

% of series 
(2 d. factors) 0.00 0.07 0.05 0.12 0.15 0.17 0.17 0.14 0.13 0.02 

% of series 
(1 d. factor) 0.00 0.01 0.04 0.05 0.11 0.11 0.12 0.14 0.22 0.20 

 
The strong comovement indicated by the low number of factors was expected, since in theory 
our variables share the same underlying forces. When explained by 2 dynamic factors, the 
relatively dispersed distribution of the idiosyncratic components in our ‘port factor model’ 
(PFM) is similar to the one reported in D’Agostino and Giannone (2007), albeit shifted 
towards higher idiosyncratic variances, which suggests that the potential benefits of the 
GDFM apply to the U.S port sector dataset as well. When we use one dynamic factor, the 
distribution is shifted further to the left, as expected by the disaggregate nature of the dataset. 

1 For reference purposes we provide the estimation of dynamic principal components with )75.0( 75.0TroundM = , 
denoted in Table 1 as dynamic (b). 

28

J. Angelopoulos, C. Chlomoudis, SPOUDAI Journal, Vol.67 (2017), Issue 1, pp. 22-37



After applying the GDFM to our panel, using the parameters discussed in the previous 
section, we compute for each series the commonality ratio, the spectral coherence and the 
angle of the cross spectral density versus reference series at frequencies zero and at the 
business cycle frequency: The commonality ratio, or degree of commonality is the amount of 

variance of the common factor divided by its total variance 
t

t
t X

c χ
=  measures the 

information content degree of the original series is included in its common factor, i.e. how 
well the series is described by its common factor, in the context of the information contained 
in the panel. This metric should not be confused with a regression coefficient, and ince we are 
focused in the frequency domain, an appropriate measure of fitness between the common 
components and the common component of a reference variable across all frequencies is the 
spectral coherence defined by: 

T
N

T
N

T
N

refrefii

refi

refi
C χχχχ

χχ

χχ
ΣΣ

Σ
=

2

                     (7) 

for series ),...1( Ni = and common component of reference series refχ .  

We use GDP and IP:Man, utilizing them also for the categorization of all common 
components with respect to their cyclical properties by computing the angle )(θφi , 

]...[ ππθ −∈ : As per Forni et al. (2001), we interpret each series as: 

pro-cyclical,  if 0)arg()0(
00

=Σ= T
Ni

refi χχφ   

counter-cyclical, if in phase opposition πφ χχ =Σ= )arg()0(
00 T

Ni
refi ,  

We then invert signs for the series in phase opposition and compute the angle )( *θφi , using a 

typical business cycle frequency. We choose to set a three year half cycle 
36
2* πθ = , and 

compare **

* )arg()(
**

θθ
θφ

θθ χχ T
Ni

refiΣ
=  with *θ

τ , where τ is an empirically set angle,  which 

contains the angles of the ‘coincident’ series at the ],[ ττ−  interval. Since *θ
τ  is in periods 

(months), we set this boundary at 3 months. Therefore if 3)(
*

*

≥
θ
θφi , the series is 

characterized as leading, if 3)(
*

*

−≤
θ
θφi , lagging, and otherwise as coincident. We report the 

properties of key individual series as well series major categories in Tables 3 and 4.  
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Table 3 
 Commonality Ratios, coherence and cyclical properties of key PFM series 

Series tc  Rank 
GDPi

C χχ  GDPφ  INDPROφ  

Industrial Production: Manufacturing 0.81 1 0.99 -1.0 0.7 
PFM Imported TEUs (comp. index C.1) 0.81 2 0.93 -0.1 2.3 

Long Beach inbound TEUs 0.79 3 0.93 -1.6 0.6 
Virginia total TEUs 0.73 6 0.93 -0.5 2.1 

U.S GDP 0.72 9 1.00 0.0 1.8 
Los Angeles total TEUs 0.70 11 0.83 1.2 3.9 
Virginia export TEUs 0.66 12 0.93 -1.2 1.3 
Industrial Production 0.60 16 0.99 -1.8 0.0 

Los Angeles - Long Beach longshore shifts 0.60 17 0.96 -0.4 1.8 
South Louisiana total dry bulk tones 0.60 19 0.31 9.7 11.4 

Savannah TEU throughput 0.59 23 0.96 -0.8 1.6 
Baltimore import RoRo tones 0.55 29 0.72 -7.1 -3.9 

Oakland container tonnes 0.55 30 0.55 5.1 8.1 
Miami cruise passengers 0.52 48 0.63 -0.3 0.6 

Cass US Freight Export Index 0.51 50 0.97 -2.1 -0.2 
New York export TEUs 0.48 57 0.87 3.0 5.4 

Transportation Services Index 0.46 61 0.99 -0.5 1.3 
San Diego autos tones 0.37 91 0.96 -1.7 0.0 

Corpus Christi liquid bulk tones 0.33 98 0.50 5.1 -7.5 
Baltic Dry Index (BDI) 0.29 108 0.09 -7.7 -11.0 

Tacoma assessable containers 0.27 117 0.81 5.9 8.5 
Los Angeles general cargo tons 0.14 165 0.96 -1.9 -0.7 

 
Table 4 

Summary properties of PFM series 

Series Group Number of 
series tc  GDPi

C χχ  
MANIPi

C
:χχ  MANIP:φ  

Total TEUs (throughput) 10 0.49 0.78 0.78 2.5 
Imported TEU / TEU-tonnes 7 0.54 0.92 0.93 -0.1 
Exported TEU / TEU-tonnes 10 0.44 0.81 0.77 3.6 

Port workforce shifts 5 0.35 0.87 0.89 0.9 
Liquid Bulk tonnes 6 0.37 0.63 0.68 0.5 

Cruise Passenger series 9 0.27 0.67 0.67 1.8 
Empty TEU / TEU-tonnes 16 0.27 0.58 0.63 1.8 
Auto units / RoRo-tonnes 20 0.24 0.66 0.71 0.7 

Bulk tonnes 33 0.25 0.47 0.49 4.9 
General Cargo tonnes 15 0.18 0.67 0.67 1.8 

Breakbulk tonnes 3 0.12 0.32 0.34 -7.1 
 

We point out the high commonality ratios tc  of U.S GDP and IP: Manufacturing and we 
consider this result unexpected, with respect to the level of disaggregation for the majority of 
the series included in the panel. This means that the 2 dynamic factors of the PFM reflect the 
same driving forces of the U.S. economy and manufacturing. The results are consistent also 
using one common factor, with the commonality ratio of GDP at 0.70. Even if we exclude 
nearly all aggregate series from our dataset (TSI(Passengers),TSI, IP:Mat and the 2 Cass 
indexes) the commonality ratio of the U.S GDP remains high at 0.71 with two dynamic 
factors). The ranking of series groups based on their commonality ratio averages is dominated 
by series relative to TEUs and container-tones, followed by port workforce series. Bulk, 
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general cargo and breakbulk present the lowest commonality ratios, reflecting the different 
effect they have on the panel. However relevant to the GDP, we can see the elevated 
importance of the auto / RoRo series PSD and the comovement of general cargo tones with 
IP: Manufacturing. The highest commonality ratios in the first quartile are dominated by 
series from the large ports of Los Angeles, Long Beach, port of Virginia, Huston and South 
Louisiana, most of which involve imported TEUs / container tons and container totals, or 
throughput, including  incoming, outgoing and empty containers. Exceptions to this finding 
are the Ports of Virginia exported TEUs, liquid and dry bulk totals, port of Huston exported 
TEUs and clerk and longshore shifts for ports of Los Angeles and Long Beach combined.  

Table 5 
 Cyclical Properties of PFM series with respect to GDP 

 
 
 
 
The cyclical properties of our port dataset are relatively balanced, although the average lead 
and lag are lower compared with macroeconomic datasets. Major leading series (on average 
4-7 months) include exported TEUs from New York, Baltimore, Huston and Savannah, TEU 
/ container tones throughput from Tacoma, Los Angeles, Oakland, Portland, cruise 
passengers total and BDI. The highest leads (13-17 months) are found in Huston export 
empty TEUs, South Louisiana throughput and Vancouver auto tones. The highest lags, 
ranging from 11 to 15 months are found in Morehead breakbulk tones, Baltimore steel and 
other metals tons and Oakland general cargo tones. Most of the 24 counter-cyclical series 
refer to bulk cargo tones and empty containers. Exceptions are the lagging countercyclical 
series of Willimington TEUs and Oakland autos. All aggregate indexes and most port 
workforce series are found to be coincident with the GDP and Industrial Production. It should 
be noted that the categories of general cargo, bulk and breakbulk are less consistent with 
respect to their cyclical properties and more sensitive to model parameter changes. 
Our results, most evident in larger ports, are analogous with the ones presented in Altissimo 
et al., (2001) where the commonality ratios for all sectors of the Euro Area were assessed 
between 0.50 and 0.60, with the trade sector being on the high end (0.58), but less correlated 
than other variables with the business cycle. Imports in Altissimo et al., (2001) were found to 
be lagging, compared with exports, although some commodities such as raw materials, crude 
oil and beverages were found to lead the cycle. Our results with respect with oil are mixed: 
South Louisiana crude oil and Corpus Christi oil series are lagging and lagging/coincident 
respectively, while South Louisiana petro-chemicals and total liquid bulk series lead by 10.5 
months on average. Nieuwenhuyze (2006) also reports a similar relationship between the 
common factors of Belgium’s imports and exports, to our results between imported and 
exported TEUs or TEU tones: Commonality ratios 32.6 and 40.9 for exports and imports 
respectively, with imports slightly lagging versus exports. Two additional observations can 
be deduced from table 4: a) the shift in raking between commonality ratios and spectral 
coherence vs. GDP for port workforce shifts, general cargo tones and auto units / RoRo tones, 
indicating that their relatively lower explanatory power for the factor model does not imply 
that they are less ‘appropriate’ than other series categories for GDP regressions. b) The PFM, 
through the common component of the GDP provides strong indications that it contains 
different, or additional, non-idiosyncratic information content for the U.S economy compared 
with popular national indexes related to freight, such as the TSI (Freight) and two Cass 
indexes. This information can be possibly related to the amount of incoming / imported 

Series Leading Coincident Lagging Total 
Pro-cyclical 44 75 49 168 
Counter-cyclical 4 3 17 24 
Total 48 78 66 192 
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freight or materials consumed or processed in proximity to the port hinterland / region, as 
well to the port added value. Identifying these differences is an item for further work.  

4.2 Design and Evaluation of Port Factor Model Forecasts 

Due to the length of our series (87 months) we opt for using an expanding (also called 
recursive) window out-of-sample forecasting approach: We treat the first half of the panel 
( )2/T  as known and we compute forecasts of all series for horizon h , then extending the 
panel to ( ) hT +2/ , iterating up to hT + . Cheung and Demers (2007) report that the best 
forecasting properties are obtained by their smallest rolling window sample, set at 40 
quarterly observations. For our forecasting exercise we compute the relative mean square 
forecast errors (RMSFE) for each of the series, using a) the PFM b) a naïve model, in which 
the ‘forecast’ is the value of the previous period, and c) a random walk with drift, constrained 
within its past variance.  

Table 6 
US. GDP Relative RMSFEs with Naïve, Random Walk and Port Factor Model 

 
Periods 
ahead  PFM Naive Random 

walk 

DM Test 
Naïve vs. 
PFM(lev.) 

DM Test 
RW vs. 

PFM(lev.) 

DM Test 
Naive vs. 
PFM(g.r) 

DM Test 
RW vs. 

PFM(g.r) 
1 2.33 3.63 3.19 -2.42*** -1.49*** -2.65*** -1.47*** 
2 2.04 7.16 3.17 -2.59*** -2.27*** -2.02*** -1.38*** 
3 1.62 10.39 2.91 -2.58*** -2.27*** -0.89*** -1.76*** 
4 1.31 13.20 3.10 -2.51*** -2.47*** -0.96*** -1.92*** 
5 1.21 15.54 3.02 -2.43*** -2.48*** -1.79*** -2.25*** 
6 1.08 17.49 3.12 -2.39*** -2.53*** -2.08*** -2.39*** 
7 1.00 19.15 3.17 -2.44*** -2.68*** -2.48*** -2.41*** 

We designate *,**,*** as 10%, 5% and 1% significance levels respectively, in which equal predictive ability between 
rival models and GDFM is rejected 
 

We report the RMSFE and the Diebold-Mariano (1996) test results (DM) for the consistency 
of forecast gains, for the U.S GDP, IP and a sample port-specific series, the port of Long 
Beach outbound TEUs both for the series levels (lev.) and for growth rates (g.r). In terms of 
RMSFEs, the GDFM outperforms both the naïve and the random walk level forecasts in all 
forecasting horizons. The DM tests for level forecasts reject in most cases the hypothesis for 
equal forecasting accuracy between GDFM and rival forecasts. In the case of GDP growth 
rates, the DM tests fail for horizons 1-3. This is not surprising, since the ‘monthly’ GDP 
values are a product of interpolation; in a sense, the GDP unobservable monthly growth rates 
are constructed by a naïve model. Apart from this exception, GDFM forecasts outperform 
both rival methods.  
GDFM forecasts improve, as the horizon increases, which provide additional incentives for 
compiling longer datasets2. However, for the series of Long Beach the rate of improvement 
over forecasting horizons in terms of RMSFE is more gradual, visible also in the DM level 
forecast results. The lower DM tests results of the growth rates compared with level forecasts 

2 The maximum number of ‘periods ahead’ forecasts depend on the number of lead / lag Bartlett window, which 
in turn is defined as a function of the number of periods T covered by the panel. 
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was expected, since the former is a transformation or the latter, producing MSFEs several 
orders of magnitude lower than the ones produced by levels. Having presented the results for 
three series with high commonality ratios, we summarize the DM tests for all 192 series and 
horizons (1-7) for key confidence levels. The majority of the DM results are globally shifted 
in favor of the PFM, both vs. the naïve and the RW method, with very few exceptions having 
positive values. Even at the challenging environment of growth rate forecasts against the 
random walk, in more than 20% of the instances a 5% confidence level is achieved, and in 
the case of level forecasts, in more than 66% of the instances.  We also report that the highest 
results for the PFM are obtained in horizons 4 to 7 months. We consider these results as 
promising, taking into account that our evaluation timeline spans within a volatile period, 
influenced by the 2008 shock. The lowest results in DM tests are concentrated in series 
related to bulk cargo, and smaller ports, such as Aberdeen, Morehead, Vancouver, as well as 
the BDI. Low DM results in container related series include the Los Angeles and Virginia 
(Hampton Roads) incoming TEUs. 
 

Table 7 
IP index Relative RMSFEs with Naïve, Random Walk and Port Factor Model 

Periods 
ahead  PFM Naive Random 

walk 

DM Test 
Naïve vs. 
PFM(lev.) 

DM Test 
RW vs. 

PFM(lev.) 

DM Test 
Naive vs. 
PFM(g.r) 

DM Test 
RW vs. 

PFM(g.r) 
1 2.36 6.02 4.64 -1.22*** -2.43*** -0.88*** -1.55*** 
2 2.22 9.04 5.08 -1.91*** -2.35*** -1.30*** -1.41*** 
3 2.23 12.80 4.66 -2.14*** -2.43*** -0.03*** -0.95*** 
4 2.39 16.59 4.91 -2.23*** -2.17*** -1.34*** -1.60*** 
5 1.35 19.77 4.49 -2.03*** -2.26*** -1.58*** -2.08*** 
6 1.06 22.25 4.93 -2.12*** -2.60*** -1.95*** -2.24*** 
7 1.00 24.57 4.64 -1.97*** -2.45*** -1.83*** -2.38*** 

 
Table 8 

 Long Beach Outbound TEUs MSFEs with Naïve, Random Walk and Port Factor Model 

Periods 
ahead  PFM Naive Random 

walk 

DM Test 
Naïve vs. 
PFM(lev.) 

DM Test 
RW vs. 

PFM(lev.) 

DM Test 
Naive vs. 
PFM(g.r) 

DM Test 
RW vs. 

PFM(g.r) 
1 1.81 4.19 4.03 -3.66*** -2.30*** -2.94*** -1.86*** 
2 1.72 4.76 3.81 -1.71*** -2.28*** -0.55*** -1.28*** 
3 1.54 6.02 3.55 -2.43*** -2.42*** -1.57*** -1.74*** 
4 1.62 7.46 3.80 -2.16*** -2.64*** -2.77*** -2.27*** 
5 1.29 7.96 3.76 -1.75*** -2.60*** -1.44*** -1.60*** 
6 1.27 8.53 4.05 -1.83*** -2.64*** -2.45*** -2.04*** 
7 1.00 9.06 4.05 -1.53*** -2.35*** -2.57*** -1.61*** 
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Table 9 
 DM tests distributions for level and growth rate forecasts 

 Level forecasts Growth rate forecasts 

DM test 
range 

PFM vs. 
Naïve 
Freq. 

PFM vs. 
Naïve 

Cum.% 

PFM vs. 
RW 
Freq. 

PFM vs. 
RW 

Cum.% 

PFM vs. 
Naïve 
Freq. 

PFM vs. 
Naïve 

Cum.% 

PFM vs. 
RW 
Freq. 

PFM vs. 
RW 

Cum.% 
-2,58*** 452 33.63% 201 14.96% 146 10.86% 10 0.74% 
-1,96*** 441 66.44% 708 67.63% 336 35.86% 285 21.95% 
-1,65*** 213 82.29% 202 82.66% 221 52.31% 335 46.88% 
-1,28*** 168 94.79% 205 97.92% 249 70.83% 327 71.21% 
0*** 51 98.59% 27 99.93% 328 95.24% 369 98.66% 
More 19 100.00% 1 100.00% 64 100.00% 18 100.00% 

 
On the other hand, for the outgoing TEUs of Los Angeles and Long Beach, exported and 
imported TEUs of Baltimore and exported TEUs of Savannah and Huston, as well as for the 
Cass and TSI indices, the PFM has produced competitive results. We also obtained good 
results for several of the series related with vehicles (auto units, RoRo tons etc.). The latter is 
supported by Kitchen and Monaco (2003), where Total Light Vehicle Sales Growth series 
was assessed as one of the best scoring relative RMSE series in short (1-3 months) 
forecasting utilized in the US Treasury Real-Time Forecasting System (RTFS), a 
methodological approach similar to the factor model.  
Our parameter estimation strategy in this exercise was to establish a consistent basis of 
dynamic, static factor ranges and Bartlett lag window size with respect to maximizing the 
average forecasting performance across all variables. We realize that this strategy may 
produce inferior forecasts of some variables, since the optimal model parameter setup for 
forecasting varies both between series and forecast horizons, and more importantly, non-
linearly to the number of static factors. Therefore, we assume that there is room for 
improvement to the forecast accuracy of the model, for several series included in the panel. 
Not all series share the same dynamics, or that one model specification is optimal for all 
series. Customization of the PFM settings for specific ports, cargo types or forecast horizon 
improves their forecasts, at the expense of worse forecasts for other series. 
 

5. Conclusions and Future Work 

In this exercise, using a large dataset from the majority of U.S ports, covering 84.4% of TEUs 
and 60.1% of the dry bulk monthly volumes, as well as cruise passengers between 2005-2012 
in the context of a one-sided generalized factor model we have a) assessed its dynamics and 
rich lead-lag structure reflected in 2 dynamic factors, b) demonstrated favorable forecasting 
performance for series of individual ports as well as for aggregate economic indices, 
especially in longer forecast horizons 4-7 months, c) we assessed high commonality ratios of 
the U.S GDP and IP indices common factors, reflecting the link between ports, trade and a 
national economy, d) we pointed that the common component of the GDP, as assessed by our 
‘port factor model’ provides strong indications that it contains different or additional non-
idiosyncratic information content for the U.S economy compared with popular freight 
indexes, such as the TSI or the Cass indices. The results of this approach provide added value 
in two areas of interest in contemporary research: Firstly in port economics, by providing 
competitive forecasts for individual incoming or outgoing cargo types, as well as port 
throughput and secondly, in macroeconomic applications of national factor models.  
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The results provided, are useful both for the U.S port industry, as well as for government 
authorities, agencies and central banks: Short and mid-term forecasting is of interest to port 
operators and authorities, in order to prepare or adapt to future incoming or outgoing trade 
volume fluctuations by adjusting labor requirements, outsourcing decisions, delay or rush 
infrastructure and equipment maintenance, as well as enhance operational coordination with 
freight transport operators. Our proposed approach offers potential advantages, due to the fact 
that forecasts are constructed based on contemporary and past information not only for the 
port series of interest, but from all ports at once. From a government agency or a central bank 
perspective, the links of ports and the national economy can contribute as an additional asset 
for macroeconomic forecasting, as well as creation of timely available port and trade related 
indexes.  
With the compilation of larger datasets, apart from the obvious extension of the forecasting 
horizon, and by utilizing a rolling window approach we will be able to explore potential bias-
variance trade-offs and infer possible heterogenic processes or structural changes over time, 
as well as evaluate alternative factor model implementations. The next logical step is the 
construction of a coincident indicator, utilizing as basis the common factor of the U.S GDP, 
as explained by our model. Furthermore the U.S port sector, as mapped in this exercise can 
provide a constrained environment which may shepherd the identification of demand or 
supply shocks within the assessed common factors. 
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