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1. INTRODUCTION

One of the basic problems in numerical optimisation is that of minimising
a general function subject to a number of linear equality constraints. A class of
methods to solve this problem is by the introduction of the classical Lagrangian
function, and the problem reduced to the solution of a system of non - linear
equations.

The Jacobian of the constraints is constant, and the system Jacobian has
a well known special form
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a) G, and therefore the whole matrix, is symmetric.

b) J is the constraint Jacobian.

¢) O is an m by m null matrix.

Two methods are described which update the system Jacobian, while main-

taining the same form. One of them (method 2) preserves all the properties of the
matrix, and the other (method 1) loses the symmetry. %
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with the following properties :

II. SPECIAL QUASINEWTON METHODS FOR LINEAR CONSTRAINTS
1. Quasi- Newton Methods
1.1 Preliminaries, General Properties

The simplest form of Newton’s method for solving the set of nonlinear
equations
f@=0 x=@x)i=1,..., (1a)
is XOEAD = x® . (JW0) £ a0 c (1b)
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where x ® is the kth approximation to the solution, % denotes f(xi0), jOO de-
notes the Jacobian of f® evalutated at x%), and a® = 1 for all k.

The advantages of (1b) are that if it works at all then it works extremely well,
convergence is rapid, and, if a sufficiently good initial estimate of the solution can
be determined, it is probably the best available method.

The most serious charge levelled against Newton’s method is that it often
fails to converge to a solution from a poor initial estimate. The second disadvantage
of the above form is the difficulty of evaluating J(x) if f(x) is a complicated function
of x. The third disadvantage of Newton’s method is the necessity of solving a set
of linear equations at each iteration.

The Quasi- Newton methods have been motivated to overcome the second
disadvantage of Newton’s method, that is they generate approximations to J&
with no additional function evaluations. Suppose that at the kth iteration an ap-
proximation B to J® is given, B%+D js forced to satisfly the Quasi-Newton
equation

Bk+b p(k) = y(k) (2&)
where

p(k) = x&+H) . g (Zb)

Y& = fatD _ f), " (20)

B®&+D js regarded as «corrected» version of B® that is
B&4D = f®) 4 D
where D is the correction matrix (update) usually of low rank.

In the casr where the Jacobian matrix is square (and non singular) instead
of storing and modifying an approximation B® to the Jacobian it is sufficient to
store and modify an approximation to the inverse Jacobian. If this is denoted by
H® equation (1b) becomes

XEFD — ) . H® fo) gtk 3

when seeking an Quasi - Newton algorithm to solve a given problem we would
take into consideration the following

(1) the algorithm should not converge to an incorrect solution. An example
of this would be convergence to a saddle point.

(2) Premature or false convergence should be avoided. It sometimes occurs
that the matrix H becomes singular or nearly so, and the resulting step
length |jp|| becomes in q ligible. If one terminated the
iteration by testing |ly|| alone, then one could have false convergence,
but this may be prevented by testing also ||g|| which is the norm of the
gradient of the function F(x) under minimisation.

(3) Algorithms should not fail catastrophically when updating the matrix H.

Another feature that affects the overall speed of an algorithm is the amount
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of -work required during each iteration. If a® == 1 in (1b) and (3) then the amount
of work is minimal. If H® is positive definite and x(+V is given by (3) then,
for a® sufficiently small and positive, we have Fx+? < Ftk,

1.2. Quasi- Newton methods for Equality Constraints

Assuming that the first partial derivates of the objective function and the
constraints are explicitly available, with initial estimates of x and 2, then Quasi -
Newton iterations can be constructed for their improvement estimates. The chara-
cteristic feature of such methods is that they generate, from information readily
available, an approximation to the Jacobian of the non - linear system under consi-
deration. The exact Jacobian of the system, when partitioned into four sub-
matrices has the form

G {Jr
5%l

where G is the Hessian of o(x,\) = F(x) + AT C(x). The proposed iterations are
various combinations of the following properties of the matrix.

A. G, and therefore the whole matrix, is symmetric.

B. J is the constraint Jacobian which will be evaluated at each iteration in
order to calculate the residuals.

C. O is an m by m null matrix.

In principle then the only unknown part of this Jacobian is the submatrix G,
and a Newton - like method it appears that only this submatrix need be estimated.
However as mentioned in section 1.1, the efficiency of the Quasi - Newton methods
is partly due to the direct generation of approximations to the inverse, thereby
avoiding the numerical solution of a linear system at each step.

A well - known formula gives the inverse of a matrix partitioned in the above
manner as

X —G' W
ey 4a;
—WIiG w ] L
where
W =—(G™ J5)" @
X=G1+G JTWIG (o)

1t is possible therefore to create direct updating procedures for the inverse.
However the validity of this inversion depends upon the sub - matrix G being non -
singular, and this cannot be guaranteed. Hence, methods which. overcome this
problem are considered.

33
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1.3. Quasi- Newton Tterations

Suppose that in the solution of (1) estimates of x and B—' are available, where B
is an approximation of the system Jacobian. A Quasi- Newton iteration updating
X to Xy and- B! to B, then takes the form similar to (2)

p = —B1f (52)
Xy = X+ p {5b)
Bl = =B14D 69

Quasi - Newton methods are characterised by choosing D so that the matrix
B, satisfies the Quasi- Newton equation

Byp=f —f=y. ©)

This relationship does not of course determine B, uniquely and different methods
are derived from different choices of the n-m degrees of freedom.

One such method, which has some satisfactory theoretical properties, in
addition to' justifying itself in practice is that proposed by Broyden 1965

B, =B+ (y—Bp)p" 72)
-where
pT=pT/pTp (70)
Of course a routine use of Sherman - Morrison formula allows (7) to be
written as a correction to B-! with no reference to B itself. This procedure is
followed for the construction of the new methods. ‘
In view of the symmetry of the exact Jacobian for the system we have in mind,
a symmetric analogue of this update, given by Powell 1970, would seem a useful
choice to make. Assuming that B is symmetric, they Powell’s formula is

Bi=B+(—Bp)p' +p(y—BpT—20pp" (82)
where
28 = pTy—pTBp, (8b)
Both of these methods fall within the methods satisfying all the properties mentioned
in 1.1. ’
The update given by the formula (8) is not the only one which preserves sym-
metry, for example, the simple rank update

B,=B+ (y—Bp) (y—Bp)T/a (92)
where .
a=(@y—BpTp (9b)

also preserves symmetry. However, the denominator a for this update could eB
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possibly zero, another source of unreliability; this is rejected therefore in favour
of formula (8).

Having established means of handling symmetry we now consider the thrid
of the listed properties of the system Jacobian, and assume that the approximations

B,B; take the forms
K|N K| N,
~———f——1 and —
M| O M| 0 ]

respectively. The partitions M and N are not now equal to J and JT respectively,
despite the assumption that these latter matrices are known exactly.

The tehnique is used to preserve this structure is to update the three partitions
separately, and for this an analogue of (6) for each partition is necessary. For this
case, equations (5a) and (5b) and they become

M
M o] [
X1 X [
= = —_— - P 0b;
e B el R e
and the Quasi-Newton equation (6) becomes

Kip+Nygq=4d,—d (11a)
Myp=c;—c¢. (11b)

I

[:—‘é ] (102)

The latter equations are in general satisfied exactly by the true system Jacobian
only if the system is linear. Since it is assumed that the exact system Jacobian is
available at each iteration, we can also consider modifications of these equations
which are less restricted to the linearity assumption.

In fact the vector Jyp and J,Tq are easily evaluated, and since M, N, are
approximations to Jj, J;T respectively, we may impose the linear relationships

Mp=Tp (12a)
Nig =J"q. - . (12b)

Finally, in order to maintain the symmetry we may set
Ny =M. (12¢)

Last equations represent some of the known properties of the exact Jacobian,
and there can be used to update the partitions of the approximate Jacobian. From
the numerous possibilities the following are chosen in order to restrict the cor-
rection fo rank two.

(i) M, is derived from the Broyden formula (7)
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My =M + (z—Mp)p" " (133

where
either  z =¢ —¢ (13b)
or z=Jp (13¢)

(i) N, is derived from M, using (12c), or from a direct application of Broy-
den’s formula (7) using (12b).
The latter formula is

Ny = N + (W — Ng)q" (14a)
where
w=1q. (14b)
(iii) K, is derived either from Broyden’s formula, giving
K, = K 4 (y—Kp)p" (15)
or from Powell’s formula if symmetry is to be maintained giving
where
Ki=K+@—Kp) pT+ py—Kp)T—20p p'  (162)
‘where
20=pTy—p'Kp. (16b)
Here the vector defining the Quasi - Newton equation is taken to be
either y=4d;—d—Niq (17a)
or y=d —d—J,"q (17b)

2. Special Updates for Linear - Constraints

2.1. Preliminaries

If the constraints are all linear in the variables x, then the constraint Jacobian
is a constant m by n matrix J, and two Quasi - Newton updates can be constructed
which allow for this. If we suppose that the approximation of the system Jacobian
at the beginning of an iteration has the form

B= [L L] (18)
Jio

Then there will be two updates, based upon Broyden’s update, which can be used

to update this matrix while maintaining this-form.

It will be assumed that at the beginning of ‘the iteration process, the initial
Jacobian inverse is consistent with a matrix of the above form. Two updates can
be constructed, one which preserves all the properties of B, and the other one which
loses the symmetry of the upper left - hand partition K. &
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The methods are on the update of the matrix K only, using but part of the
Quasi - Newton equation (11) that is the formula

Kp=d —d—N; (192)
or by (12b)
Kp=dy—d—J7q. (19b)
The vector JT g can of course be calculated, and in some respect it resembles

the «modified» Quasi- Newton equation.

2.2, Method - 1, for Linear Coustraints

Assuming that the approximate Jacobian for the non-linear system has
the form (18) we can use a Broyden rank -1 updatd (7) to create a new approxi-
mation to the partition K only at each iteration. The exact constraint Jacobian
provides a Quasi - Newton equation for the K partition as follows

NEWTON STEP :
Kp+ JTg=—d
Jp=—c
QUASI - NEWTON EQUATION :
Kip=y=d—d—]Tq
BROYDEN RANK -1 UPDATE FOR X :
K=K+ (@—Kp)p'

The complete update then can be written as

S - e

where
R -

and

s= [L
0
and Applying the Sherman - Morrison fo;:mula to the inversion gives
T
B i SIS H (22a)
14sTHr
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which: can be evé,luated immediately from Hr and sTH, '
Hr=H [—dl—} (22b)
0
sSTH=[("|0)]H (220)

2.3. Method -2 for Linear Constraints

Assuming now that the system Jacobian has’the form (18) where K is sym-
metric, we can apply the Powell’s update (8) to the partition K only at each iteration.

NEWTON STEP :
Kp+JTq=—d
JTg=—c
QUASI - NEWTON EQUATION :
Kip=y=d—d—J7q
POWELL SYMMETRIC UPDATE ON N:
Kip=K+ (v —KplpT+p(y —Kp)T —20p p7
20 = pTy—p" Kp=oT d.

The complete update is

[Fe] - [THEdrereer - dw
"where
rz[y—Kp—Bp] _ [dl—QP] (23b)
0 0
and
g ]—g| ‘ 23)

The Sherman Morrison formoula applied to the iteration gives
Hy = H+Fl{ |—(4+rTHs)Hr + THr)Hs |sTH +
+ |"TH)Hr— (1 +sTHr)Hs|rTH} (24a)

where .
D=(4rTHs) (14 sTHr)— (sTHr) (T Hr). (24b)
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The relevant vectors and scalar products are given by

20 = pTd;
Hr:H[ii:;‘l‘_’J, Hs=H[E——}
o | 0
THs = Hr) s, T Hr=Hr)'r . (240)
sTHs = (Hs)'s , sT Hr = (Hs)Tr
sTH = Hs)T . T H = H0)" .

Thus (24a) can be evaluated from (24c).

III. EXPERIMENTAL RESULTS - CONCLUSION

The two methods dealing with linear constraints have been tested together
with other methods on two different problems BVPL and BVP1. The BVP1 is the
differential equation :

F=Y—(Y)*2+2+3T*2
subject to the boundary conditions
Y—Y =0
Y—Y =3
The BVP2 is the differeutial ebuation :
F=-Y*Y—D*D—Y+41
subject to the boundary conditions
Y=0
Y=l

Frot the different experimental results taken place we can state that method -
1 has advantages in computation over similar methods for linear and non - linear
constraints.
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