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I. INTRODUCTION

Let the design space X be a compact Hausdorff topological space and let B be
the Baire o- field on X. Let f;r ={(fiy, fip, ..., fin) be a vector of continuous
i

real valued functions on X fori=I to q for some q = 1. Foreachx € X, Y (x) stands
as a generic random valiable with

EY (x) = f-li-(x) By, i=1 toq, and Var (Y (x) ) = o2,

where,

T ; ; ;
B i E R is the vector of unknown parameters in the i-th model.

Let A;, i= 1 to q, be a given family of matrices, where the order of A, is njxst
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and is of foull rank si <ni. We are primarily iuterested in estimating A-{ B

simultaneously for i = 1 to q using the same set of uncorrelated ran-
dom variables Y(x;), Y(xp),..., Y (xn). The choice of x,, X,,..., Xn is go-
verned by some optimality criterion and is tantamount to choosing a de-
sign , i. . a probability measure § on B. Let § be a design and M; (&) the corres-

ponding information m atrix. It can be verified that AFirBiis estimable if and only

ifR(A;) =R (M (§) ) where R(A) denotes the Range of A, and that in such a case
~~ #+

dispersion matrix of Aifj is proportional to Ali M, (§) A, where M+ denotes

the Moore Penrose Inverse of M. Consequently, when we look for a design for the
above problem, first of all. we must make sure that the given design satisfies
R(A) = RM; (8)) for eachi = 1 to q. Let E be the class of all designs.

Define Z, = { £EeZ: R(A)S R(M,; () ), i=1to q }
The optimality criterion we are interested in is the following :

q
F (&) = Z w; Tr. (AT M;+(8) A),

where

q
w;, i=1to q, are preassigned weights, all positive and > w;= L.
i=1

The purpose of this paper is to find an optimal design according to the above
criterion. Fellman(7] considered the above problem when q =1 and the design
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space X is finite. In this paper, we will employ simpler and more direct methods
to show the existence of optimal designs according to the above criterion. We will
also give some characterizations of these optimal designs.

2. OPTIMAL DESIGNS

As usual. we define a design &, & E, optimal if F(,) = Inf F(§)=
EEE,
min F (). The following series of results are designed to establish the existence
=0
of &o.

Lemme 2 .1,

Zi is a convex set.

Proof Let&, & €E; and O0<A<I1. we shall prove that §(L)=LE,-{-(1—L) E2EZ,.
The cases %= 0 or==1 are cbvious. Let 0<<L<C1. Note that M, [E(L)] =AM, (&)
+(1—A)M(&y). Obscrve that M, [E(L)]=ZAM; (&1). (P=Q < P— Q is positive
semi - de finite). It easily follows that R [M, (§1)] © R [M(&()))]. See, for example,

Fellman[7, Lemma 1.1.5, p. 34]. As R (A)) = R [M; ()], it follows that R (A))
C R [M, (& (M)]. And this is true for every i=1 to q.

Lemmwa 2.2.

The function F is convex on Zi.

Proof. Fellman [7, Lemma 3.1.1., p. 45] proved that the function

Tr.(AI.T Mi+ (€) A, is convex on the set J£ €Z: R(A) = R [M, (5)14.

The next result is fundamental in proving the existence of oplimal designs.
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Theorem 2.3.

Let Ba, n21 be a sequence of positive semidefinite matrices of order gxq con-
verging to Ba. Let ¢ be a fixed gx1 vector. We can prove that

(i) If c€) R (Bu), then lim ¢™B c=c¢™B ¢
n=0 n-+ oo o o

(i) Ifc€ N R(Bu), but ¢ does not belong to R (By), then limsup 5 pte=oo.
nzl n-» oo n

Proof. See Kaffes [8].

If =y is a strict subset of =, we can always find a boundary point of Z; not
belonging to Z4. For such peints , the following is true

Theorem 2.4.

Let &, be a boundary point of = not belonging to =;. Then limsup F(§) = oo .
E-E&
Ee &y

(€ » &, is understoed in the sense of weak convergence).

Proof. Since §,€Z;, there exists i€{l, 2,3, ..., q}, suchthatR (A))
is not a subset of R [M; (§,)]. Consequently, there is a column vector ¢ of A, such
that cZ R [M, (§,)]. Let &Eq, n =1 be any sequence in = converging to §, weakly.
It then follows thatM; (&n), n>1 converges to M, (§,). By theorem 2.3.,
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. - +
limsup ¢¥ M. (§n) c= o0,
-0 .

- + - . .
Consequently,  limsup Tr. (A—ir Mi (En) A) = oo. Since each w; =0, it

n—os

follows that limsup F (£n) =eo. This completes the proof.
11 =+ 00

Theorem 2.5.
F is continuous on Zi.

Proof. This is a simple consequence of the first part of theorem 2.3.
Theoremes 2.4 and 2.5 conbined will now give us the existence theorem of an
optimal design.

Theorem 2.6.

There always exists an optimal design §,eZ;.

Proofl. Let f=InfF (£). Obviously, B is finite. We can find a sequence E&p,
EEE,
n =1, such that £,&Z) and lim F (&) = (.

n—>cc

Since X is compact, = is compact under weak topology. (Z consists of all re-
gular probability measures on the Baire ¢ - field of X). Sec Varadarajan [12].

Consequently, we can find a subnet {€a} of &n, n=1 converging to some ele-
ment £,E=. If£,EZ,, since F is continuous, lim F (E,) = F (§,) = lim F (Ex) —f.
a n—oo
Hence &, is optimal. If £, ¢ Z,, then &, is a boundary point of Z; not belonging to
Z1. Consequently, limsup F (§) —=w, by theorem 2.4. This then would imply
§=8, €=
that } =<2, a comcradic.ion. This completes the proeof,

152



3. SOME CHARACTERIZATIONS OF OPTIMAL DESIGNS

Some of the results in this section could be used in developing an algorithm
for the above situation. We begin with a lemma.

Lemma 3.1.

Let My and M, be two given positive semi - definite matrices. For every
ae (0, 1), define M (o) = (1— a)M, + aM;. Then

d d
Mt () =—M*(a) (—— M(a)) Mt(a) (3.1.1)
da da

Proof. This result is well known when My and M4 are just nonsingular
matrices. Sce Fedorov [6, Lemma 2.9.2., p. 124]. See also Decell [5, Introduction,
p. 357].

We first have to show that M+(«a) is differenntiable in «. For this we need the
following result of Cline [4].

If Uand V are any two matrices, then
nxq nxr

(UUT + VVT)+ = (I— C+T VT) U+TK U+ (I— VC+) + (CCT)*,



where

K=I—-U*V({— CfC) M (U+tWV)T, with C=(-UU¥)V and

M = (I - (I—C+C) VTU*T U+V (I— C+C)—!

In our case, we can write (I - ¢) M; -+ oMa = (I— o) AAT 4 ¢BBT. Let
U=14/l—a Aand V= Vu B. | can easily check that .- C+C is independent
of a. From this the desired conclusion follows.

Now, using a result of Decell [5, Theorem, p. 358], we obtain

d d d
——M+ (a) =—M+ (a) [ —M(0)] M+ (a) -+ [ ——M(a)] M+(a@)M+(o) -+
da da d

d . d . _
M+(u) M+(a) [_G_M () M (o)M(u) { ——M (¢) M ()M (a) +
o da

. ; d :
M (@M T(a) | 1 M(a)] } M(@)M ™ (a).
arn

d
Note that [—M(a) = M3—M;, and R (M;) © R(M(a)) for i=1, 2.
do

By lemma 2.2.4. of Rao and Mitra [11, p.21], a necessary and sufficient con-
dition fer B A—~A = B is that R (BT) = R (AT), where A and B are any two ma-
trices, A— being a g-inverse of A. Similarily, AA—B = B is true if and only if
R(B) < R(A). Using this result and the fact that M(«) is symmetric, we obtain

M *(@)M(a) (Ms—Mj) = M () M* (@) Mo—M(@M* (€)M = Ma—M; =
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d
_—— M(a) and

da
d d
[—— M(a) IM(@)M* ()=MsM * (0)M(a)—M M " (2) M(0)=Ms—M; = ——M(a).
da do

Consequently, (3.1.1) is true.

Theorem 3.2.
The following conditions are equivalent
() &% is optimal

g + |
(b) Z wiTr_.; AET [ M, (&*)Mi (E)M,(E#) 1k Al} < F (E%)

i=1

for every & € = satisfying R (M, (€*)) © R (M, (§)) for all i=1 to q.

Proof. This resultis similarto thecorem I(a)of Léuter [10, p. 54], in spirit.

(a) = (b). For E€E satisfying R (M{(§*)) & R(M; (&) for every i = I

toqand « €[0, 1), let & (o) = (I— a) £* + «&. Then

d o q d 4 ~
£ £
FEON], _ =2 wiTr.{A [ —M, GO@)IA ] _
= T -
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(.]. oo X o + o~
= — > wTrAIM. (E(@)[ M; (B—M, E)IM, (S@) A}, _

i=1

0

(By Lemma 3.1)

q b~ .o~
= > wTr {ATM, (E@)M; EOM, (E@) A}l _,

q o+~ + o~
— 2 wiTrf ATM (Ea) My OM, (E@) A}l _

1=] 0

Note that

lim AT M (& @M, EOMF (& (@) A, =ATMT E) A, and
- l 0 1 1 1 1 1

lim AT MY (E@)M, @M’ (Z @) A,
g0 i 1

]/
=-.AiT M GO M, @) P

1 +
M, 2EME &%) A
RYM, (O] MiE®)} i i

See Liuter [10, Theorem 1 (a), p. 55]. Here Ps denotes the projection ope-
rator onto the subspace S. Now,

MEEP M, 7 @)
R 72 (&)]*M, (9}

% % %o o+ o4
—M, &M, G MEDIMERM,  ©F M, ©FM, G M, EHM;

P4 1,
™, @)
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Note that for any matrix M, ProaP = M (MTM)*MT. See Boullion and
Qdell [3, Theorem 7, p. 7).

Now, we observe that

17

s

/ 1,
M, ©® [Mi]‘[f2 @ M, €)= M; (8%, as R[M; €")] =R[M, ()] =R [Mf ®]

by hypothesis, and, by a similar argument,

)
M, EHIM, 2 @ M, 2@ =M, &*).
It is also true that R {[M; €9 M; (Z) &M §} S RM,EY].

Now, it is not difficult to see that

M &M, e p

1

Uy o+ M @M € = [MEIM @)
RIM, 1" M, &) 1 ‘

M, (691"

Thus we have

d ~
—F(§ (1)) ]
da =

+

q =
SFE=3 v Tr ATV, @ M @M, @A,
= i i )

d o~
Since &* is optimal we have ——F (& (@))]a=o20.
da
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This proves (b).

(b) = (a). Suppose £* satisfies (b) but not (a). So we can find §;=Z such that
F (£1)<< F (€*). We can assume that [Mi (§5)] %0 for every i =1 to q. If not,
we can always find £* == with |M; (§1%)| 540 for every i=1 to q and M, (§1) and
M; (§1*) are as close as you please for every i= 1 to ¢. Since F is continuous
on Z;, we can choose the above &,* to satisfy F (§,%)<<F (£%) as well. Now, we con-
sider the design.

=

£ (0) = (1— u)&* + a&y for uve (0,1). By an argument similar to the one used in
proving the implication (a) = (b), we have

d = q . T + +
— F (€ (0)) ] =FED— 2 w.Tr{A  [M. G M  (EoM; E*)] A}
da a=0 = | 1 1 1 i

=0, by condition (b).

On the other hand, by the convexity of F, we have

d -
— F (€ (2))] 20

da a=20

This is a contradiction. This completes the proof.

Lemma 3.3.

Let 2= {E&e=; R [M; (§))] & R [M; (§¥)]for all i=1 to q},
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+ ; ;
Where & & Ej is some fixed design. Then

d

min —— F[(1—0) &-+0&)]  <FED)—F@
xeX da o

for every EEEy, where &y is the one point design associated with x&X.

Proof. Let £EE5; and consider the designs & (0) = (1— «) £ + aE*,
a< (0, 1) . Since F is convex en =4, we have,

d  ~
——F () ] < F @EH)—F@©).

da oa=20

On the other hand, by an argument used in the proof of theorem 3.2,

FE @] S w.Tr AT M
e o gt w, 1r, 3 .
da a=0 i=1 ! B

) A; }

q 1
— 2 w; Tr. { AiT M: &) Miifﬂ(g*) P 1y M_lh (E*)
E) P+ M @E)] !

= | RHM;

q .
Mfr & A; } 2F E)— > W, Tr.{A;rM: (a)Mf/‘(g*)P
i i=1

+
= Ry, &0}
M, P M ©A)
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(it is known that Pm i <P i) if R(A) & R(B). Sce Ben- Israel and Creville [2, E-

xercise 54, p. 71].

=F (E)— zq w. Tr. {Af M T OMEIM @ AL

(see the proof of theorem 3.2.).

Thus we have

d

>F (5)— J z w, TrdaTM] @ £ T oM @ A} @0

q T o
>F (&)—max > wiTr{A l(é)f(x)ff OM; @) A}

x=X i=]
It is true that
d T
—F[(I— o) § +a&s] | - =F (§)— Z W 11 {A (E) f (%)
du =10 =1

00 M A }.

The above is a modified version of what Liiuter [19, p. 56) proved.
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Consequently,

d 1 q.‘ T + T
min — —F | (1—a) E+-aéy ] = FE)—max > w; Tr. [A° M Ef()F.(X)
xeX da u=—0 x&X =l B 1

-+ d ~
Mi € Aif< — F(E(a)] < F (E%)—F (§).
da u=0

This cempletes the proof.

The following is an important consequence of the above.

Theorem 3.4,

Let §*EE be optimal. Then,

d
min — F[(l—a)§ -} a& ] < F (E%)—F(E) for every ECE,.
XX du a =0

Proof. By Lemma 3.3. for £,E5,

d
min — F [(l—a) &4 a &y ]] <sF@E)—F(©)
xeX da Ju=0

for every EEZ3 = {§=E1: RIM; (§)] © R (M; (&) for every i=l1 to g}.
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If §4€Z4 is such that M, (§1)] 550 for every i=I to q, then E; = Z;.
Let 3 = { EEE;|M; (§) |0 for every i=1 to q}. Then

d 1
min ~—— F [(1— a) & 4 a&x] < inf F (&) — F (E)
xEX da o=0 §ED;

for every EEE;. As E5 is dense in E; and F is continuous on Z;, we have

d

min —— F [(1—a) & + a&y] } < Inf F(E)— FE)=F (E%)—F ()
xEX do o=0 &ieZ,

for every §EE;. This completes the proof.

Remark 3.5. Kiefer [9, Equation 6.5, p. 877] proved a result similar to
the above. See also Arwood [1, Equation 2.1., p. 1126]. Their inequality is for ge-
neral convex criterion and in our special case, the above inequality is more in-
formative.

Theorem 3.6.

For E*=E,, the following are equivalent.
(a) £* iv optimal.

k! Tust 4
(b) m&z]wi Tr A M, GO f My EDA L =FE.
X 1=
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Proof. Letus denoteTr. {A;{’\/l: () f, x) f;r (X)M: () A} by 9;(x,E)

fori=1to q and E=ZE;4.

(a) = (b). Consider the design E(a) == (1—u) £% L abx, xeX, «= [0,1).

Then

~ I 9 T, F
FE@)=— > w.Tr.JA M (% A4}
—u i=1 ! b

q o ;
——————— Tr. {A] M:' EILEOT M E* A

=5 “rl =

i=1  (1—a) [l —o--ad(x.£%) ]

I “ q 0 (X, §%)

whare

4 x. 89 =17 () M. () £ ().

The above identities are derived based on the identities given by Liuter
[10 p. 56].
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Now, from the above, we derive

d

—FE @)

q
=F@E9—2,
da i=1

a=0

Wi @ (x, §%) (3.6.1)

for every x€X. See also the procf of Lemma 3.3.

Thus, since £* is optimal,

q
F(E*) >max > w.o.(x, &%
xeX i=1 '!

On the other hand, for every £

J T

+q
J.Zwmﬂmnﬂﬁ) )
—-— ]:

i=l

X

from which it follows that

q
max > w;;(x8) >F @)
xeX i=l1

(3.6.2.)

T OMEM @A =FE,

(3.6.3).

Now, (3.6.2.) and (3.6.3) together establish (b).

(b) = (a). Suppose £* is not optimal. Let £,=Z; be any optimal design. By

Theorem 3.4
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d
min —— F [(I— a) &% + ox] <sFE)—F(E"<O
xeX da a=0

On the other hand,

d q
min —— F [(1— @) £*+ a&] = F(E*)—max > w;¢;(x8=0,
xeX do o==0 xeX =1

as we assumed (b) and in view of the identity (3.6.1). This is a contradiction
and completes the proof.

Now, let us specialise to the case q = 1. Write Ay=Afi = f Mi=M,
A result similar to the following ene can be found in Fedorov [6, Corrolary 1,
p- 128] for the case of non - singular linear optimal designs.

Corrolary 3.7.

Let the design space X be compact Hausdorff and let Y (x) be a random
variable with EY (x)=fT (x) B and Var (Y (x)) = c? for every x€X, where
fT: X - R™ is a continuous function and BTE R", is the unknown vector
[xn

of parameters. Let === J§ ; € is a regular probability measure of the Baire o -field

of X}. let £y = {€eZ; R (A) © R (M (§))}, where M (£) =J Xf‘(x) fT(x)E (dx) is

the information matrix associated with £ and A is a matrix of full rank s.
nxs

Let F (§) == Tr. {AT™™™ (§) A}, EEZ1. If a finite design
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Xy X3 ... Xr

Pt P2 «.- Pr

with py, pu,...., prall positive and £¥EZ, is F - optimal, then

fT(x;) M™ (&¥) A ATM" (&%) f (xi) = F (£%)
for every i=1 to r,

Proof. Suppose &* is F-optimal but fT (x)M™ (§%) AATM* (£%) f(x,)
< F (&%) for soms i3] 1, 2,..., r}. Note that

-
> pifT(x) MY (E¥) AATM™ (£%) F(x)) = Tr. | ATM™ (E¥) A } = F (&%),
=1

Since £* is optimal, by Theorem 3.6.,
fT(x) M™ (£%) AATM+ (£%) f (x) < F (%) for every x3X.
Therefore.
r ' T
F(@E")= > pifT(x)M* (€%) AATM* (E) f(x)< D pj F(E¥)=F (£%),

o= =

a contradiction. This proves the result.
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