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Abstract

In this paper we conduct an indirect test for speculative bubbles in the exchange value of the curren-
cies of Germany and the United Kingdom relative to the U.S, dollar. Our test is general enough to include
models that either assume the validity of purchasing power parity (PPP) or arrive at a PPP-type relation-
ship. On the empirical side, the test is based on a unit root test appropriate for general ARMA representa-
tions of the underlying time series. We obtain strong evidence against the presence of bubbles over the free
floating period 1974-87 (JEL C22, F31).

1. Introduction

In a paper that appeared recently in this Journal, Kirikos (1991) employed
stationarity and cointegration tests to check the empirical relevance of exchange
rate speculative bubbles for a class of models that either assume the validity of
purchasing power parity (PPP) or arrive at a PPP-type relationship. Even
though his results were consistent with the possible existence of bubble paths in
the dollar/deutschemark and the dollar/pound exchange rates over the post-
1973 free floating period, the author was reluctant to conclude that the no
bubbles hypothesis could be definitely rejected and suggested a number of exten-
sions of the tests on the basis of power considerations and the adequacy of the
underlying stochastic representations. A testing procedure that improves on
Kirikos' (1991) approach is considered in this study.

While the possibility of rational speculative bubbles in linear asset market
models and in general equilibrium asset pricing models cannot be excluded on

* The authors would like to thank, without implicating, J. S. Butler for his useful comments.
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purely theoretical grounds [see Blanchard (1979), Blanchard and Watson (1982),
Obstfeld and Rogoff (1983, 1986), Singleton (1987), Diba and Grossman (1988),
Kirikos (forthcoming)], the available work on the empirical relevance of bubbles
has produced mixed results [see Meese (1986), Evans (1986), Woo (1987), West
(1987), Kearney and MacDonald (1990), Kirikos (1991)]. Nevertheless, a rejec-
tion of the no bubbles hypothesis does not necessarily imply that bubbles exist.
As Flood (1987) and Flood and Hodrick (1990) have pointed out, bubbles are
model-specific and therefore their presence is tested jointly with the hypothesis
that the underlying model, which generates the fundamental values of the rele-
vant asset price, is correctly specified. In addition, bubble paths can be easly
confused with asset price paths generated by expected violent changes in funda
mental determinants which are not realized in the sample.

In this paper we exploit the relationship between nominal exchange rates and
relative prices, implied by Purchasing Power Parity (PPP) or by a PPP-type
relationship [see, e.g., Stockman (1980) and Lucas (1982)], to test the no bubbles
hypothesis for the currencies of Germany and the United Kingdom relative to
the U.S. dollar. The approach taken hereisindirect in the sense that we do not
assume the validity of a particular model of exchange rate determination.
Instead, we examine the relevance of price level bubbles for the underlying
currencies. On the empirical side, our test is based on a Dickey-Fuller unit root
test appropriate for general Autoregressive Moving Average (ARMA) represen-
tations of the underlying time series.

The paper is organized as follows. In section 2 we describe the test and
discuss its properties. The estimation method is presented in section 3, and our
results are reported in section 4. Section 5 contains concluding remarks.

2. Testing for Speculative Exchange Rate Bubbles

Diba and Grossman's (1984) characterization of a divergent bubble provides
the basis of the bubble test considered in this study. Specificaly, Diba and
Grossman observe that the presence of an explosive bubble implies that the
order of integration (i.e. the number of times a series must be differenced to
induce stationarity®) of the relevant asset price series exceeds that of the underly-
ing fundamentals. In addition, Hamilton and Whiteman (1985) have shown that
tests for bubbles that depend on the validity of a linear rational expectations
model impose untestable restrictions on the dynamics of variables that may be
taken into account by market participants but not observed by an econometri-
cian. Once such restrictions are relaxed, the only statistically valid test for bub-
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bles involves a test of stationarity for the asset price series and the underlying
fundamentals.

The stationarity test for bubbles is based on the following observation. If a
bubble does not exist, the order of integration of the relevant price seriesis equal
to the order of integration of the driving exogenous variables. However, if a
price series does not exhibit stationary behavior after differencing as many times
as necessary to induce stationarity of the underlying fundamentals, we cannot
conclude that a bubble is actually present. Indeed, Hamilton and Whiteman
(1985) note with regard to the interpretation of a stationarity test for bubbles:

"... inpotentially explosive systems, the 'trans versality', 'forward-looking',
and 'no bubble' restrictions are identical. Thus, not even the proposed
stationarity test has anything to say about whether bubble terms... enter
with non-sero coefficients; rejection of stationarity is subject to varying
interpretations.” [pp. 371-372]

Alternative interpretations of a rejection of the equality of the orders of integra-
tion of a price series and the underlying market fundamentals include a misspeci-
fication of the underlying model, "peso problem" effects, a bubble path, and
even irrationality of expectations.

The appropriate null hypothesis here is the no bubbles hypothesis because in
the presence of a bubble the test is not uniquely defined. Furthermore, the test
can only provide conclusive evidence against the existence of divergent or
explosive bubble paths. Non-explosive bubbles [see, e.g., Miller and Weller
(1990)] generate stationary deviations of asset prices from their fundamental
values and therefore a stationarity test would always fail to detect them (i.e. the
test has no power in the case of non-explosive dynamic indeterminacies).

Meese (1986) argues that the stationarity test for explosive bubbles may give
misleading results because the bubble term may not exhibit nonstationary
behavior that is discernible from the sample Autocorrelation Function (ACF) of
the asset price series. Specifically, Meese considers Blanchard and Watson's
(1982) specification of a stochastic bubble:

d. = (bm)'d-s + q;, with probability n
t = qt, with probability 1-m, 6

where E:q:= 0. Using the specification in equation (1), he generates artificial
bubble series with 112 pseudo-observations and estimates the corresponding
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ACF and Partial Autocorrelation Function (PACF). Upon inspection of the
estimated functions, Meese concludes that the artificial bubble series can be
identified as low order stationary autoregressive processes in spite of the fact
that they are generated by the nonstationary model given in equation (1).

We repeat Meese's experiment, but we restrict the bubble to be non-negative
because a negative asset price bubble is not possible under free disposal [see
Diba and Grossman (1988)]. Specifically, we use the same values ofb and m as in
Meese (1986) and generate 200 pseudo-observations while the bubble lasts.
Because the implied autocovariances of the nonstationary artificial series are
infinite, we take the logarithms of our pseudo-observations’ and estimate their
ACF and PACEF. The results are reported in Table 1 (see appendix) and suggest
that the restricted artificial bubbles exhibit nonstationary behavior’.

In section 4 we employ the stationarity test to investigate the relevance of
rational exchange rate bubbles in the currencies of Germany and the United
Kingdom relative to the U.S. dollar over the free floating period 1974-87. Our
approach is indirect in the sense that we do not test for the presence of exchange
rate bubbles in the context of a particular model of exchange rate determination.
Instead, we use the stationarity test to examine the relevance of price level
bubbles for the nuderlying currencies. Evidence of divergent price level bubbles
should be taken as evidence of exchange rate bubbles, given that the exchange
rate is a relative price between two currencies.

We choose the stationarity test to assess the relevance of speculative
exchange rate bubbles for two reasons. First, the possibility of omitted funda-
mental variables or a misspecification of a model leaves the equality of the
orders of integration of prices and market fundamentals as the only observable
implication of the absence of bubbles. Second, we avoid conditioning the test on
the assumption that a particular model of exchange rate determination is correct
and thus we reduce the number of maintained hypotheses that such a depend-
ence entails. The stationarity test is general enough to include models that
assume some form of PPP (e.g. monetary models) as well as general equilibrium
models that arrive at a PPP-type relationship. In view of the strong econometric
evidence against the adequacy of the available structural exchange rate models,
this property of the test appears to be particularly important.

The test for explosive price level bubbles is based on a comparison of the
orders of integration of the (logarithm of'the) price level [Consumer Price Index
(CPI)] and the (logarithm of the) money stock (M1) series for the United States,
Germany, and the United Kingdom. Ifthe two series are integrated of the same
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order, we conclude that the price level does not exhibit bubble behavior, which
implies that the relevant exchange rate also does not exhibit bubble behavior.

The use of a reduced-form equation for the price level, in which the only
predetermined variable is the money stock series, will not affect the ability of our
approach to provide evidence against the presence of bubbles. Indeed, if the
price level series is integrated of the same order as the money stock series, a
divergent bubble cannot exist because the order of integration of omitted fun-
damental variables cannot exceed that of the price level series. However, a
rejection of the no bubbles hypothesis may be due to nonstationary omitted
fundamental variables and therefore it does not necessarily provide evidence of
bubbles.

3. Estimation Method and Test Statistics

To determine the order of integration of a time series, we examine plots of
the series against time and of its sample ACF. A stationary time series does not
wander extensively and its ACF dies out quickly. The same is true for the errors
of atrend stationary series. While an examination of the series and its sample
ACF provides some information about the stationarity of a series, this study
also conducts statistical tests for stationarity of a series.

If a series is nonstationary, then the autoregressive (AR) lag polynomial of
its ARMA representation has one or more unit roots. For example, let the series
Y. have the representation:

¢(L) (1-pL)Y(=c+06(L)e, t=1, 2, ...; 2)

where the error term & is i.i.d. with e~ (0, 6°), ¢ is a constant, L is the lag or
backshift operator (L'Y:= Yii), (L)= 1-p1L-@2L% - ... - 9o L7 O(L) = 1-6,L-6,L°
= ... - BgL% and all roots of @(L) lie outside the unit circle. If 0<<p<l, then Y, is
stationary [see, e.g., Wei (1990, chapter 3)]. However, for p= 1, equation (2) can
be written as:*

(P(L)AYt =ct B‘(L)SL (3)

where A [A = (1-L)] is the difference operator. Thus, when the autoregressive lag
polynomial in equation (3) has a unit root, the first differences of Y, exhibit
stationary behavior so that Y, is difference stationary. Finally, for p>1, the
series Y; exhibits explosive behavior. Similar results obtain for negative values of
p (-1<p<0, p=-1, p<-1).
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Equations (2) and (3) show that testing the stationarity of a series is equival-
ent to testing for a unit root in the AR polynomial of its ARMA representation.
In the presence of a unit root, the series is difference stationary and has the
representation given in equation (3). Thus, we can determine the order of inte-
gration of a series by testing the null hypothesis H,:p=1 against the alternative
hypothesis Hi:p<lI. This is equivalent to testing the validity of the nodel given in
equation (3) against that of the model given in equation (2).

Under the null hypothesis of nonstationarity, standard asymptotic theory
does not apply. Nevertheless, Dickey and Fuller (1979) have derived the limiting
distribution ofthe estimator of p and ofthe relevant t-ratio when the hypothesis
H,:p=lis true and 6(L)= 1. Dickey and Fuller (1981) have extended these results
to likelihood ratio statistics and Said and Dickey (1985) have shown that the
same limiting distributions apply for Autoregressive Integrated Moving Average
[ARIMA (p, 1, q)] models when the latter are estimated by a one-step Gauss-
Newton non-linear estimation with proper initial values for the parameters of
@(L) and O(L). Percentiles of the distributions are given in Fuller (1976) and
applications of the tests are described in Dickey, Bell and Miller (1986).

The presence of unit roots in macroeconomic time series has important
implications regarding the persistence of random shocks, forecasting, regression
analysis, and real business cycle theory [see Nelson and Plosser (1982), Stock
and Watson (1988), Christiano and Eichenbaum (1990)]. Nelson and Plosser
(1982) use annual data from 1860 to 1970 for fourteen U.S. macroeconomic time
series (including the CPI and the money stock series) and perform Dickey-Fuller
(1979) tests for unit roots. In all but one case (the unemployment rate) they
cannot reject the null hypothesis of a unit root against the alternative hypothesis
of a linear trend and stationary errors and conclude that the series are difference
stationary.

Nelson and Plosser's results cannot be taken as evidence for speculative
exchange rate bubbles because their data cover a period of fixed exchange rates
(except for a short period in the 1920s) which is incompatible with explosive
bubble behavior. In addition, they conduct the unit root tests under the assump-
tion that only autoregressive terms are required to obtain satisfactory represen-
tations of the series.

Here we use the results of Said and Dickey (1985) to test for a unit root in a
general ARIMA (p, 1, q) representation of a series’. Although the test is approp-
riate for testing the null hypothesis of a single differencing of the data against the
alternative hypothesis of no differencing, the series under consideration may
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have already been differenced on the basis of information provided by plots of
the series and sample ACFs. Thus, the unit root test can help us decide whether a
second differencing of the data is needed or not.

The simplest case obtains when a series is satisfactorily represented by an
autoregressive process so that 8(L)= 1 in equation (2). Then, the appropriate test
statistic for testing the hypothesis Ho:p=1 against the alternative H;:p<l is the
t-ratio for the coefficient of Y,-; in the regression of AY,on 1, Y1, AY, , ..os
AY-,, where the lag length p is selected so that the residuals are approximately a
white noise process. This statistic, denoted by t,, does not have the usual
Student-t distribution under the null hypothesis of a unit root. As mentioned
above, the limiting distribution of 7, is derived in Dickey and Fuller (1979) and
its percentiles at various significance levels and sample sizes are given in Fuller
(1976)°.

When 0(L)#1 in equation (2), Said and Dickey (1985) show that the T,
statistic has the same limiting distribution as long as p is estimated by one
iteration of the Gauss-Newton algorithm. Said and Dickey (1985) and Dickey,
Bell and Miller (1986) point out that empirical power studies emphasize the
importance of good initial estimates of the autoregressive and moving average
parameters on which the one-step Gauss-Newton non-linear estimation is based.
We can obtain initial estimates of the constant term and the MA parameters by
estimating the model given in equation (2). Good initial estimates of the AR
parameters are obtained by estimating equation (2) under the constraint p=I.
The estimates of @(L), ¢, and O6(L) along with p=I are then used as initial
parameter values in the one-step Gauss-Newton iteration and the resulting
parameter estimates are then used to calculate the value of the statistic T=
(p-1)/0, where p and o are the one-step Gauss-Newton estimates of p and its
standard deviation, respectively. The procedure is further illustrated by applica-
tions on price level and money stock series in the next section.

4. Data and Results

As in Kirikos (1991), our monthly data are the logarithms of the CPI (base
year= 1980) and the MI series of the United States (US), Germany (G), and the
United Kingdom (UK) from January 1974 to December 1987. The levels of the
series are taken from various issues of the [International Financial Statistics.

We use the following general notation: P and M denote the logarithms of the
CPI and M1, respectively, while the superscripts (US, G, UK) denote the country
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(e.g. M® stands for the logarithm of the money stock series of Germany). A
differencing factor A [A= (1-L)] and/or a seasonal differencing factor Az [A12=
(1-L'»)] precedes any differenced and/or seasonally differenced series (e.g. A~
AP"® denotes the seasonal differences of the first differences of the U.S. price
level). Since the logarithms of the series are used throughout the analysis, we
drop the term logarithm in the following discussion.

Because the sample autocorrelations of the series P and M, reported in Table
2 (see appendix), are significant at long lags and decline very slowly, this evi-
dence suggests that the series are not stationary. The sample ACFs of the differ-
enced series, also reported in Table 2, have significant spikes for the U.S. data
while they exhibit significant spikes and strong seasonal patterns for the German
and the British data. For the U.S. series we do not observe a discernible seasonal
behavior. Clearly, simple inspection of the sample ACFs cannot help us deter-
mine whether a second differencing is necessary to induce stationarity in the
data, so we now present the results from Dickey-Fuller tests for unit roots.

In Table 3 we report the values of the Dickey-Fuller t, statistic for the
differenced series and their seasonal differences. These values are derived under
the assumption that the series have low order AR representations [AR(1),
AR(2), and AR(3)]" and serve as a preliminary test of the hypothesis of a unit
root against the alternative hypothesis of stationarity. More specifically, the ,
statistic is the t-ratio for the coefficient of Y- in the Dickey-Fuller regression:

P
AY.=c+ oY + X BAYwi+ & 4)
i1

where ¢ is a constant, a and B; (i= 1, ... p) are regression parameters, and Y, is
series which has already been differenced. The critical values of the T, statistic for
testing the hypothesis H,:p=1 against the alternative H;:p<l are approximately
-3.51, -2.89, and -2.58 at the 1%, 5%, and 10% significance levels, respectively
[see Fuller (1976, p. 373)]. Thus, according to the values reported in Table 3, we
reject the hypothesis of a second unit root in all but one case.

Although the results of Table 3 suggest that the first differences of the series
and their seasonal differences exhibit stationary behavior, they are based on the
arbitrary assumption that the series are represented by low order autoregressive
processes. In what follows, we relax this assumption and use the sample ACFs
and PACFs to identify the ARMA representations of the differenced series
and/or their seasonal differences. Then we estimate the corresponding models
and use the value of the T statistic to test the hypothesis of a second unit root
according to the procedure discussed in the previous section.
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The ACFs and PACFs of the seasonal differences of our differenced data are
reported in Table 4. Based on these sample functions and those of table 2, we
identified the representations described in Table 5. The estimated ARMA mod-
els are reported in Table 6.

To understand Said and Dickey’s (1985) method for estimating the T,
Dickey-Fuller statistic, we describe the estimation procedure for the indentified
model for the series A;2APY®, Similar procedures apply for all other series.

The identified model for the series A2AP"® [see Table 5] is estimated as
follows®:
(1+0.24L) (1-0.71L) A2AP™ = -0.00012 + (1-0.67L") ¢,, (5)

Q(36) = 41.34, p = 0.248,

where Q is the Box-Ljung statistic and p the associated p-value. Under the null
hypothesis that the residuals follow a white noise process, the Q statistic has a y’
distribution with 36 degrees o freedom. To estimate the T, statistic, we set the
potential unit root equal to one and derive an initial estimate of the autoregres-
sive parameter as ¢ = -0.35. Then the model is estimated by a one-step Gauss-
Newton iteration with the initial values p'”= 1, ¢'”= -0.35, ¢”= -0.00012, 8'”=
-0.67: -

(1+0.35L) (1 - 0.75L) Az2APY = -0.00012 + (1 - 0.69L'%) g, (6)
0.07) (0.052) 0.02)

where the numbers in parentheses are standard errors. Thus, 1,= (0.75 - 1) / 0.052
= -4.80 which is lower than the critical value -3.51 at the 1% significance level.
The hypothesis of a unit root for the seasonally adjusted series AP" is rejected.

Our results are summarized in Table 6. In all cases the value of the T, statistic
implies a strong rejection of the hypothesis of a unit root against the alternative
hypothesis of stationarity. We conclude that, except for a seasonal adjustment,
the first differences of the price level and money stock series of the United States,
Germany, and the United Kingdom need no further differencing to induce sta-
tionary behavior. This equality of the orders of integration suggests that diver-
gent price level bubbles and exchange rate bubbles did not occur over the free
floating period 1974-87.
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5. Conclusions

The unit root tests provide strong evidence that, except for a seasonal diffe-
rencing, the price level and money stock series of the United States, Germany,
and the United Kingdom are integrated of order one. Thus, the price level of
these countries did not exhibit bubble behavior over the period 1974-87 which
implies that the deutschemark/dollar and the pound/dollar exchange rates also
did not exhibit bubble behavior.

While a stationarity tests appears to be appropriate for testing for specula-
tive asset price bubbles, the ability of unit root tests to discriminate between
borderline stationary alternatives has been questioned [see, e.g., Christiano and
Eichenbaum (1990) and Cochrane (1991)]. Specificaly, Cochrane (1991) shows
that a unit root test has arbitrarily low power in borderline cases. In addition, by
constructing local unit root alternatives to a stationary series, he also shows that
even when atest can distinguish between alternative stationary models, it cannot
provide any information about the best small sample distribution theory because
the likelihood finctions of the local alternatives are arbitrarily close.

Notwithstanding their limitations, the unit root tests can help us avoid some
serious problems implied by the presence of aunit root. In particular, our results
provide strong evidence against the presence of unit roots in the series of infla-
tion and the rate of monetary growth for three countries and, consequently,
against the presence of speculative bubbles in the relevant exchange rates. These
findings are important for several reasons. First, while they do not provide
support for the hypothesis of market efficiency, they show that inefficiencies are
not likely to be the outcome of speculative bubble behavior. Second, in the
absence of bubbles, direct government intervention in the foreign exchange
market cannot be justified on the basis that bubbles represent macro shocks that
must be offset [see Dornbusch (1982)]. Third, bubble-augmented structural
exchange rate models are not likely to explain the observed variability of
exchange rates over the recent free floating period.

Our tests and results pertain to divergent rational exchange rate bubbles.
However, the possibility of stationary bubbles has important implications for
market efficiency [see Miller and Weller (1990)]. Similarly, the presence of bub-
bles in exchange rate target zones affects the choice of an intervention rule which
is consistemt with the viability of the system [see Willem Buiter and Paolo
Pesenti (1990)]. Also, recent work by Evans (1991) has shown that conventional
stationarity tests cannot detect an explosive bubble that collapses periodically,
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because such indeterminacies do not fall into the vategory of linear autoregres-
sive alternatives considered by these tests’. Future research ought to assess the
empirical relevance of such indeterminacies.

Appendix
TABLE 1
ACF and PACEF of Artificial Bubble Series
Lag Tm
n b 1 2 3 4 5 6 7 8 9 10 0 1 2
0.1 09 ACF 985 969 955 939 925 910 895 BBO0 .865 850 -1.8 1.7 0.6
PACF 985 -006 -.007 -.007 -007 -007 -007 -007 -007 -.007
0.5 09 ACF 984 969 954 939 924 909 894 B79 864 849 -1.7 -2.3 0.5
PACF 984 -.007 -.007 -.007 -007 -007 -007 -007 -007 -.007
0.9 09 ACF 976 961 947 932 917 902 887 873 B58 844 -24 1.1 -0.5
PACF 976 173  .040 -004 -016 -005 -002 -002 -006 -.009

Notes: The data are the logarithms of the artificial bubble series generated from the form given in equation
(1) while the bubble persists and is non-negative. The starting value of the bubble (d,) is set at .0001 and q, is
drawn from a standard normal distribution. T, is the Dickey-Fuller statistic estimated with 0, 1, and 2 lags
of the Dickey-Fuller regression [see equation (4)]. The critical vatues of T, for testing the null hypothesis of
a unit root at the 1%, 5%, and 109 significance levels are approximately -3.46, -2.88, and -2.57, respectively

[see Fuller (1976. p. 373)].

TABLE 2
ACF of Price Level and Money Stock Series

Lag

1 2 3 4 5 6 7 8 9 10 11 12
Series

pYs 983 967 951 935 919 903 887 872 .857 .84l .825 .B10
APYS 686 549 491 440 389 335 389 406 467 444 440 397
MY 978 953 924 894 864 832 799 763 .726 .689 .650 .610
AMY 491 311 314 131 194 173 (185 265 279 .141 149 159
p¢ 984 969 953 937 922 906 890 874 858 842 826 810
AP 463 295 273 210 150 -014 134 208 220 242 .379 439
M© 969 935 911 888 866 .844 821 796 .773 750 737 .723
AMY -039 -38 X068 -079 115 .132 087 -068 -0.82 -395 .009 .835
pUk 980 961 941 922 903 884 865 845 825 805 .786 .767
AP 455 327 321 164 249 348 235 140 225 150 245 452
MUE 978 956 934 912 891 869 847 825 804 783 .763 .743
AMYE - 167 -107 -.135 .154 000 -085 .091 .064 -030 -.191 .060 .363
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TABLE 3
Values of the Dickey - Fuller t, Statistic
Lags (p)

0 1 2
Series
APYS -5.46 -4.33 -3.38%
AMYS -7.48 -5.83 4,45
AP¢ -7.89 -5.88 4.72
AM® -13.27 -13.92 -10.54
APYF ~7.79 -5.63 4.58
AMYK 51527 -11.33 -10.10
A APYS -7.59 -6.13 -5.41
ApAMYS -7.26 -6.04 -4.93
ApAPE -10.14 -7.96 -5.78
ApAM© -12.98 -8.57 -4.90
ApAPYE -7.61 -5.60 -4.94
ApAMY¥ -16.64 -9.45 -8.53

Notes: The lag length p is the lag length of the Dickey-Fuller regression given in equation (4). A *

denotes non-rejection of the null hypothesis of a unit root at the 1% significance level.

TABLE 4
ACF and PACF of Seasonally Differenced Series
Lag
1 2 3 4 5 6 7 8 9 10 11 12
Series
ApAPYS  ACF 45 .26 13 10 6 16 .13 11 26 22 .09 -24
PACF 45 07 -01 .04 .11 .05 .01 .03 .23 .01 -11 -4l
A AMY  ACF 43 18 3 -08 03 .06 09 28 20 02 -09 -37
PACF 43 -0l 06 -19 16 00 .10 21 00 -19 -09 -35
AuAP° ACF .19 .0t 1 06 07 .03 00 .10 08 08 .00 -47
PACF .19 -02 d2 02 06 -01 -01 09 .03 07 -05 -5I
ApAM®  ACF  -06 .03 32 02 04 14 -09 02 .14 -14 -06 -10
PACF -06 .03 33 02 o0 .04 -09 -01 .10 -08 11 -21
AnAPY®  ACF 44 31 21 05 09 .11 -01 -07 -09 -22 ~-19 -42
PACF 44 .14 03 -10 .09 .08 -12 11 -02 -15 -05 -37
AzAMYF ACF  -29 .12  -17 .09 -05 -01 .14 -13 .17 -08 .18 -45
PACF -29 04 -13 00 -01 -06 .15 -07 .11 03 .12 -37
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TABLE 5
Identified ARIMA Models

Model
Series
pPYs ARIMA (2,1,0)x(0, 1, 1)
MYs ARIMA (1, 1, 0)
pe ARIMA (1,1,0)x (0,1, 1)
ME ARIMA (3,1,0)x (0, 1, 0)
pU¥ ARIMA (1, 1,0)x (0, 1, 1)
MUK ARIMA (1, 1,0)x (0,1, 1)

Note: The identification is based on the sample ACFs and PACFs reported in Tables 2 and 4.

TABLE 6
Estimated ARMA Models
AR Polynomial 'MA Polynomial Q p T
Series
ApAPY® (1-.47L-.17L%) (1-.67L") 41.33 25 -4.80
(0.8) (.08) (.06)
AMY (1-.49L) 40.20 28 -7.48
(.068)
ApAPS (1-.32L) (1-.73L"%) 45.53 13 -8.95
(.076) (.057)
ApAM© (1+.073L-.052L%-.34L") 42.43 21 -4.90
(07) (07) (.07)
ApAPY® (1-.39L) (1-.63L") 41.31 2% -8.26
(.075) (.064)
Az AMY* (1+.27L) (1-.83L"% 14.43 99 -16.2
(.078) (.054)

Notes: L is the lag operator. Numbers in parentheses below the estimated coefficients are standard
errors. Q is the Box-Ljung statistic and p is the associated p-value [under the hypothesis that the
residuals follow a white noise process, Q has a % distribution (with 36 degrees of freedom here)]. t,,
is the Dickey-Fuller statistic estimated by Said and Dickey’s (1985) method. The critical values of
the Dickey-Fuller statistic for testing the null hypothesis of a unit root are approximately -3.51,
-2.89, and -2.58 at the 1%, 5% and 10% significance levels, respectively [see Fuller (1976, p. 373)].
All models include a constant not reported here.
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Footnotes

1. We use the term stationarity in a second order weak sense. A second order weakly station-
ary process or covariance stationary process has a constant mean and variance with covariances
and the correlations being functions only of the time difference. For alternative definitions of a
stationary stochastic process see Wei (1990, chapter 2).

2. Also, by taking the logarithms of the artificial bubble series, we account for the Siegel
paradox [see Richard Baillie and Patrick McMahon (1989, pp. 166-167)] in the case of exchange
rate bubbles.

3. The following program for the econometrics software RATS (version 3.10) generates artifi-
cial bubble series of the form given in equation (1) when the bubble does not crash:

all 0 200
declare vec g(200)
matrix g= ran (1.0)
clear d
if q(1)><(1/ (b*) )* .0001
eval d(1) = (1/ (b*m))* .0001+q(1)
else
eval d(1) = (1/ (b*n) )* .0001
do i= 2,200
while q(1)> - (1/b*n) )* d(i-1)
{
eval d(i) = (1/ (b*n) )* d(i-1) + g(i)
break
}
end while
end do i
end

The values of b and n are given in Table 1.

4. Letting p denote the mean of Y., we have c= @(1) (1-p)p for equation (2). Thus, for p= 1 we
take c= 0 in equation (3). If ¢#0 in equation (3), then Y. follows a linear trend with nonstationary
errors and c= Po(1) where B is the slope of the trend. If Y, follows a linear trend with stationary
errors (i.e. | p|<1), then its ARMA representation is (L) (1-pL) (Y-a-pt) = 8(L)e; where o and p are
the trend parameters.

5. Said (1991) has further extended the unit root test to ARIMA (p, 1, q) models with a linear
trend.

6. Dickey, Bell and Miller (1986) recommend the use of the T _statistic over other statistics on
the basis of its stability in empirical power studies. See also Said and Dickey (1985).

7. If a series has an AR(p) representation, then the lag length of the Dickey-Fuller regression
[equation (4)] is p-1.
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8. Equation (5) is estimated by the Gauss-Newton algorithm.

9. Based on a decomposition of market noise, Kirikos (1993) has suggested a weak test for
bubbles that overcomes the problems discussed in Evans (1991).
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