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Abstract

Let a discounted continuous review preventive-maintenance replacement model be such that its total
discounted cost is given by means of two functional equations. We assume that downtime is caused by
equipment breakdowns, and the length of a given downtime is the time necessary to repair the equipment
and set it back in operation. The periodic preventive replacement policy is to replace the equipment by a

new identical equipment when service age X is reached, or when the equipment fails. (JEL M11)

1. Introduction

Let us consider an system made up of only one component of age x, x>0. At
the time ofthe study the equipment is operating correctly. Its breakdown follows
a probabilistic law and it is controlled by continuous inspection. We wish to
obtain the optimal periodic policy of preventive replacement for the chosen
equipment.

Through time if the equipment does not have a breakdown, we face two
alternatives:

i) do nothing, that is, keep the equipment in service.
ii) perform a preventive replacement.

If the equipment fails, it is replaced immediately.

In both cases the equipment is inactive during the replacement time, incur-
ring a cost due to the loss of operating time.

In a preventive replacement model each replacement serves as a time origin
for the process. So, the optimal policy of replacement will be periodic and it will
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be distinguished by a single number, X*, which will remain constant throughout
the process. X* represents the optimum replacement for the equipment.

Experience and common sense demonstrate that the economic life can never
surpass the service age. Mathematically, this result can be obtained when the
annual rate of increase is very high, an event which occurs in inflationary situa-
tions.

The optimal policy required should reflect this periodic characteristics.
Then, we have that for an equipment of initial age x and age per time units X,
this policy includes the following rules:

— if the equipment fails, replace it inmediately,
— the equipment does not fail,

— if x, <X*, keep it in service,

— if x, = X*, replace it.

In the statement and the following development of the problem, the horizon of
the process of investment is taken as infinite. All costs incurred are treated as
constant monetary units. In other words, we do not consider the effect inflation
has upon them.

2. Variables

Let C, represent the sum of all the cost involved in the acquisition, trans-
portation and installation of the new equipment, and let C(x) be the operating
cost for an equipment aged x.. C(x:) is a continuous and strictly increasing
function.

During the time used to replace the equipment it will be out of service.
Therefore, we will incur in a different cost than the operations cost.

Let

Co : fixed cost when replacing the equipment,

C(x:) : operating cost for the equipment aged x;,

P(x. : cost associated with one unit of downtime for an equipment aged
X,

To(t) : pfd of the necessary time for replacement when the equipment is in
an operating condition,

Ro(x;) : salvage value for an equipment aged x,, when the equipment is in

an operating condition,



Too (t) : pfd of the necessary time for replacement when the equipment has
failed,

Roo (x:1) : salvage value for the equipment aged x;, when the equipment has
failed,

AMx) : failure rate function, and

i : interest rate measured over continuous time.

We also understand that Ro(x:) and Roo(X:) are non-increasing funcrions,
because the salvage value of the equipment does not increase with age. P(x;)is a
non-decreasing function, since the cost of losing a time unit of operation does
not decrease with the age of the equipment. We assume that the all former
functions are continuous and P(x:), Ro(x:) and Roeo(x:) are differentiables.

Let A(x,)A(x:) be the failure rate of the equipment during the interval (x, x: +
Ax.), that is, the probability of having a breakdown in that interval, given the
equipment has reached the age x.. We suppose that A(x.) is a continuous and
increasing function of x,, and we denote by i the interest rate on all the costs
incurred,

3. Objective Function

The objective function to minimize to find the value for X* is the total cost
of the equipment during its infinite life discounted at the rate i.

i) The Equipment is Kept in Service

Let go(x) be the total discounted cost of an equipment, that has an age x,
x=0. The equipment is functioning correctly and it will not be replaced by new
equipment until it breaks down.

The value of go(x) will be the operating cost of the equipment for an age x,
plus the cost of continuing to use the equipment if it does not fail in the interval
(x, x + Ax), and also the cost of replacing it, if it fails in the same interval.

If fo(x) represents the total discounted cost of an equipment that breaks
down at age X, the function go(x) will be expressed as the functional equation:

go(x) = C(x) Ax + (1 - iAt) {1 - A(x)Ax) go (x + AX)} +

+ (1 - iAt) Mx) Ax fo (x + Ax) (D



We assume that the equipment ages continuously in time, aging is measured
in time units and is independent of the age of the equipment and time origin we
select, so that:

At -
Ax

Then, we have for go(x) the relation:
2o(X) = C(x)Ax + (1 - iAx) {1 - A(x) AX go (x + Ax) } +
+ (1 - iAx) M(x) Ax fo (x + Ax) )

Since C(x) and A(x) are valued-positive and continuous functions; therefore,
to determine the behaviour of the function go(x) it is necessary to study the
properties of the function fo(x). From the definition of fo(x) we observe, that it
will behave in the same manner as the function of the cost in the case in which we
decide to make a replacement due to the age of the equipment.

ii) The Existing Equipment is Replaced by a New One

If a replacement occurs at the time of the study, the total discounted cost
will be the sum of the acquisition cost plus the cost of setting up the new
equipment minus the salvage value.

Let gi(x) be the total discounted cost of the equ:prnent in this case. Its value
is given by the functional equatlon

gi(x) = Co - Ro(x) +
+ J' o0 [ J‘“-" P(x) exp (-it) dt + g0 (0) exp (-iv) ] To(v) dv 3)
0 0

The salvage value of the equipment, Ro(x), is a non-increasing function of the
age; therefore, gi(x) will be also a non-decreasing function. Moreover, the sal-
vage value of the equipment will never exceed the acquisition cost, so that:

g (x)=0

Theorem 3.1. The functions go(x) and gi(x) defined Vx € R * have always posi-
tive values and are continuous for every value of x such that x & R".



PROOF:

The function gi(x) is always positive. From the relation between this func-

tion and fo(x) we have that fo(x) will also be positive. Therefore, go(x) will
behave in the same way.

Considering the condition of continuity imposed on all the functions

involved in the model, we infer that both function go(x) and gi(x) will be
continuous.

Theorem 3.2. Given an equipment of initial age x, x =0, that is operating cor-
rectly, its optimal periodic replacement age, X*, will be the smallest positive root
of the equation:
go(x) = gi(x)
PROOF:
If the equipment is new, that is, its initial age is x = 0, the value go(0) will be
the total cost of beginning to operate at that time with the equipment. The

function gi(0) will include besides the cost of the acquisition and installation.
Then, we have that:

20(0) < 21(0) “)

The optimal policy of replacement will depend on the values of this two
functions, go(x) and gi(x). Then:

— if the equipment is kept in service: go(x) < gi(x).
— if the equipment is kept in service: go(x) > gi(x).

As the function gi(x) is a non-decreasing function, the optimum replace-
ment age of the equipment, X*, will be the smallest positive root of the equation:
go(x) = gi(x).

Theorem 3.3. Let f(x, X*) be the minimum total discounted cost of the equip-
ment when an optimal policy of replacement, defined by X*, is followed. If the
initial age of the equipment satisfies 0=x=X?*, then f{(x, X*) is given by the
functional equations:

C(x)Ax + (1 - 1Ax) A(x)AX fo (x + Ax) +
+ (1 -1Ax) (1 - Mx) Ax f(x + Ax, X*) if 0=<x<X*,

et PP f N f P(x) exp (-it) dt +

(&)

| +£(0, X*) exp (-iv)] 1o (v) dv if x= X*,



PROOF:
Let X* be the optimum periodic preventive replacement age, then the min-
imum discounted cost is:

S (x, X*) = min go(x), gi(x) (6)

Taking into account the condition imposed on the initial age of the equipment,
0=x<X*, and th_e relation between go(x) and gi(x), we have that:

if 0= *
f (x, X*) & [gﬂ(x) 0=x<X (7)

g1(x) if x = X*
therefore, for an equipment of initial age x, 0 <x<{X*, that is functioning cor-
rectly, f (x, X*) is given by (5).

4. The Total Cost Function

Let X = X* the replacement age and ¢i(x), the function of one variable
—the initial age of the equipment— that results from fixing the value of X as X*
in the function f (x, X), namely

0i(x) = f (x, X*)

Then, @,(x) will represent the total discounted cost of an equipment of
initial age x and optimal periodic preventive replacement age X = X*.

Theorem 4.1. The function ¢;(x) defined Vx € [0, X*] by the equation:
C(x)Ax + (1 - iAX) M(x)AX fo (x + Ax) +
+ (1 - iAx) (1 - M(x) Ax f(x + Ax, X*) if 0=x<X*,
o0 v 5
Co - Ro(x) + f [ fo P(x) exp (-it) dt +
1]

| +£(0,X*)exp (-iv)] 10 (v) dv if x= X*,

Pi(x) = (1)

is continuous in its whole domain.
PROOF:

From the Theorem 3.1 we know that the functions go(x) and gi(x) are
continuous V x=0, and in particular at the points of intersection of both func-
tions. Therefore, go(x) and gi(x) will also be continuous at x = X*. Then, because



f (x, X*) = ¢1(x) is made up of at least two continuous functions, it will also be
continuous in its whole domain.

Theorem 4.2. The optimal periodic preventive replacement age of an equipment
is independent of its age and time.
PROOF:

If the initial age of the equipment is 0=x<X*, the total discounted cost of
the equipment is given by:

¢1(x) = C(x) Ax + (1 - iAx) M(x) Axfo (x + Ax) +
+ (1 -iAx) (1 - Mx) Ax) @1 (x + Ax)

Hence, rearranging the equation, dividing by Ax and taking limits as Ax — 0 we
obtain:

0=C09+ A9 fo (9 + SO i+ 20) gux) @

Defining the function j(x) = i + A(x), substituting it in (2) and solving for the
derivate of @i(x) have:

doi(x .

;':i—) = j®)e1(x) - [ Cx) + Mx) fo (x) ] 3
If the equipment fails in the interval (x, x + Ax), the total discounted cost after
that instant is given by the functional equation:

o0 v
fo (%)= Co- Roo(x) + L [ f P(x) exp (-it) dt +
0

+ 01(0) exp (-iv) ] Too(V) dv 4)
Since that too(v) is a probability density function and Too(i) is its Laplace
transform, integrating it respect to t, results

fo (%) = Co - Roo(X) + P?) ut P(:)

+01(0) T ) | Q)

P(x)

1

Koo(x) = Cp - Roo(x) +

Substituting in (5) we have:

[ 1-Too(i)] (6)

Jo (%) = Koo(x) + 91(0) Tooi) Q)
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Substituting fo(x) en (3) we obtain:

%gﬁ)ﬁ (X)910) - { C(X) + Mx) [Koox) + 91(0) Toofi) 1} ®)

This expression is a linear differential equation. To solve it, we do the following
change of variable:

¢1(x) = z(x) exp [J (x) ] ®)
where J(x) = fol j(s) ds, with the initial condition z(0) = ¢;(0).

Differentiating (9) with respect to x, matching the obtained expression with
(8), simplifying and integrating, we obtain:

200-20)= [~ exp[-36)1{-[ €+ 15) (ets) + 91O)Tw® 1] 85 (10

Undoing the change of variable, solving for @i(x), and expanding the terms of
the integral, we have that:

91(x) = o(0) exp [J(x)] -

- exp [J(x)] J: exp [-J(s)] [C(s) + 2(s) Koofs) ] ds -

- exp [160] 91O | exp [0 16) s (1)
We define the auxiliary functions:
Ee= SO j.‘((:)) Koo®) sna A(s) = ?((:)) (12)
Then, the expression (11) will be written as:
91(x) = 9o(0) exp [J(x) ] -
- exp [J(x) ] f: C)d{-exp[-I(s)1}-
- exp [ 309 1 1(0) Too(i) f: As) &f - exp [-J(s) 1} (13)

Hence, it is evident that independently of the initial age of equipment, its total
discounted cost depends on its replacement age, fixed only on basis of the cost of
the new equipment.
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Corollary 4.1. The functions /' (x, X) and / (0, X) will reach a minimum for same
value of X = X*.
PROOF:

This follow immediately from the Theorem 4.2.

Theorem 4.3. The total discounted cost of an equipment given by the functional
equations (3.5) can be expressed in an equivalent form by:

Ko(X*) exp [ -J(X*) 1+ [, Cs)d {-exp [-J(s)1}

:(0) = o
- To) exp [-JX*) 1~ T f,* A6) d { - exp [-I(5) ]}

PROOF:

Developing independently each of the functional equations (3.5), that are
expressed in terms of the relations between x and X, we have:

i) If 0=< x < X*, the total discointed cost will be given by the functional
equation (4.13).

it) If x = X* we make a preventive replacement and ¢.(X*) is given by (4.1).

Since that to(v) is a probability density function and T.(i) is its Laplace
transform, integrating with respect to t, the above expression will be written as:

91(X*) = Co - Ro(X*) + P()i(*) i P(}f*)* ©1(0) ] To(i) (14)
Like before, we let:
Ko(X*) = Co - Ro(X*) + EQ:Q +[ 1-To(i) ] (15)
that substituted in (14) yields:
P1(X*) = Ko(X*) + ¢1(0) To(i) (16)

Because of the continuity of the function @;(x) in [0, X*], the expressions
(13) and (16) are equal for x = X*, that is:

Ko(X*) + ¢1(0) To(i) =
-
=@1(0) exp [ J(X*) ] -exp [J(X*) ] L Cs)d{-exp[-I(s)]}-
xl

- exp [ J(X*) 1 ¢1(0) Too(i) L Ms)d{-exp[-J(s)]1} (17)
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Grouping terms and solving for ¢1(0), we have:

Ko(X* 37+ Gy d{-expl -
—— (X*)exp [-J (X*)] fn (s)d{-exp[-J(s)]} (18)

1- To(i) exp [ -J(X*) 1-Too) J," A(s) d {-exp [T ()]}
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