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Abstract

This work has a goal to suggest two iteration processes and the sufficient conditions under which
these processes converge and have useful properties. In other words it investigates the probability and the
sufficient conditions that have to be satisfied. The use of maximum likelihood equation as well as of the
iteration processes that are usually applied is justified only in large samples. An original sample of
hunting gun crimes in Greece led the author, based on a discrete probability model, to estimate the
distribution of five categories of crimes. Some comparisons are made between the suggested methods
concerning the speed of their convergence and accuracy of their results. (JEL C13)

1. Introduction

There has been much discussion in the old and recent statistical literature
concerning the optimal way of formulating a model, in an attempt to estimate
some parameters in it, fitting it and then assessing the goodness of fit of the data
to the model.

Gani (1989) has commented on various aspects of statistics, considering
prediction as the one having special importance. Field (1984) favors the view
that one should finish the course being able to set up models, test hypotheses or
estimate parameters and interpret the results in the classical statistical setting.

In this paper we will estimate the distribution of a population with the help
of a sample and a probability model, especially a multinomial model. A stand-
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ard approach to parameter estimation for such a model is the method of maxi-
mum likelihood.

The exact determination of maximum likelihood estimate (MLE) is often
quite difficult. In such cases (MLE) is approximated by using some iteration
process, the usual being the method of scoring for parameters as given by Rao
(1973, pp. 165-167). If 8o is the trial solution of the likelihood equation, r the r*"
iterate and O the MLE, then the use of an iteration process is justified if the error
|6, - B decreases with increased iterations and tends to zero as r tends to infinity.
We consider two iteration processes in large samples at least.

2. Estimation Methods

Under the regularity conditions the following well-known results have
already been proved by Cramér (1974).

Result 1. With probability approaching certainty as n, the size of the sam-
ple, tends to infinity the likelihood equation admits a consistent solution.

Result 2. (1/n) (3° log L/d 6%) 6 = 6 converges in probability, to -I(8o) as
n— + ¢ where L is the maximum likelihood function and 1(0) is ths well known
Fisher’s information function.

Result 3. The consistent solution of the likelihood equation is unique and
P[d°log L/30%) 6= 6<0]— 1 as n — + o=,

Let y(0) be a differential function of 6, which has no zero in a neighbour-
hood of 8, the root of likelihood equation which we assume to exist.
Define

dlogL
- 1
3 (1

Consider the iteration process 01 = [@(8)]s-4 01 841 = 0, - w(6;) (dlog L/ 96),.

Let e, =| 0, - §] be the error at the rth iteration, then the choice of y((0) is to be
made in such a way that e+; < e; and e, —0. We will consider two different
iteration processes corresponding to the different choices of y(6).

() = 0 - y(0)

(A) First consider the Newton-Raphson process, where
w(0) = - [9” log L/d6°]", then by (1) we obtain

dlog L K & log L

9:9 i
v =0+ —7 90°

(2
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Results 1, 2, 3 and the Householder’s conditions guarantee that if @o, the
initial estimate, is consistent then the process converges with probability
approaching unity as n tends to infinity.

(B) Now consider the method of scoring for parameters (SOP) Here

L

nl(0)

Now [I(8)] ' has no zero in the neighbourhood of 6 and 1(0) is differentiable.
We have

y(0) = and 0 <I(8) <e=

, where 1(6) = E ( gl

dlog L
00)=0+ ° a"eg / n1(6) 3)

In 1950 Frechet shows (see John F. (1991) that the above method converges
with probability approaching unity as n — + e,

By way of comparison of the two above iteration processes, only the N-R is
of second order, while the (SOP) is of first order. The N-R process is accordingly
rapidly convergent. However this process usually involves more cumbersome
calculations than any other. The method of (SOP) can be applied if 1(0) is
differentiable for 6 which is usually the case.

3. Application

In order to achieve much of the above and to compare the methods I
thought of carrying out this program on the basis of a real random sample which
two Greek members of an ecological organization Tsirimokou and Gouras
(1991) "fished” daily from a greek newspaper named "Eleftherotypia”. The sam-
ple presents the crimes commited in Greece with hunting guns during the period
1985-1987. In Table 1 five categories of such accidents are presented.

TABLE 1
Crimes with hunting guns in Greece 1985-1987
Inguries Suicides Unwilfull Deaths Murders Threats
640 30 29 67 514

n = 1280.
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Of interest is thequestion: What is the estimate of the probability that one of
the above types of accidents happens.

The data set has led us to choose the multinomial random vector, where x;
i=1, 2, 3, 4 are the frequencies of the five classes. The five multinomial probabil-
7-9 0 6 30

NI § RS .

E]

ities are specified with the help of one parameter
4_+_‘.‘9— ] with admissible parameter 0=0=7/9.

A standard approach to parameter estimation for such a model is the
method of maximum likelihood. For families of distributions satisfying approp-
riate reqularity conditions, standard large sample results guarantee the existence
of solutions to the likelihood equations that are consistent, efficient and asym-
potically normal (see Lehman 1980 and Cox 1984).

The distribution of X is given by
5
f(X)=n! TT P X /! @)
i=1

for nonnegative integers x;, 1 = 1, 2, 3, 4, 5 satisfying £x; = n and Zp; = 1. (see
Davis and Jones (1992) or Agresti (1990), chapter 3).

Equation (4) is exactly the likelihood function L(x, 0). Since L(x, 6) and
InL(x, 6) are maximized for the same value of the parameter 6, we have InL(8) =
InH + x;1n(7 - 99) + x2 InO + X3 InO + x4 In30 + x5 1In(4 + 46) where H is a
quantity independent of @.

Therefore the maximum likelihood equation (MLE) is

_-9)(1 L X2, X +_.?€4+h4xs

7-99 6 0 0 4+40

Introducing the observed frequencies x;,1= 1, 2, 3, 4, 5 from the Table 1 into (5),
we obtain the quadratic equation

=0 (3)

57600° + 12070 - 441 = 0 (6)

Such cases can be handled analytically using formulae of a quatratic equa-
tion. Another question has been raised here: What is going on if the (MLE) is of
third or more? The answer in this case is that the roots can be handled with the
help of an iteration process like N-R (see J. Stoer and R. Bulirsch (1980) ),
scoring for parameters cases we saw in (A) and (B) of this paper. The equation
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(6) has two roots, one positive and one negative. The positive root is the required
of 8, namely 0.19109755. As the exact value of O is available, the comparison of
the methods was easier.

The N-R iteration procedure is
(8InL _dl'nL
a0

91'*-] = Br + 892

i
8= /

6=8, N

We need a starting point. Knowing that E(x;) = np; and v(x;) = np:i (1 - pi), 1=
1,2, 3,4, 5, we propose as a starting point.

o =L( - 4x; + 300x, - 278%3 - 25%x4 + Txs5 ) = 0.23515625
n
Note that this is consistent since, as easily can be shown,
i 1
E (8y) = - = LK
(80) = 6 and V (80) 0<n>‘
2
We now need the quantities ghal : “Finl

3
the data concerned. 9 98
The first is easy to compute

) and 1(8). They are calculated for

s PEL, BVX + 5 = 228.3743 (8)
0 i

((;IH_L ) -9x4 X2t X3+ Xy 4xs
8 7 - 96, 6o 4 + 40,

The second comes from the first by differentiating and changing the sign.

- 81x, + X2+ X3+ Xy + 16)(5_
6 (7-98,)° 00" (4+46,)°

(_aPnL
d6*

=5542.6 (&)

The third comes from (9) taking its expected value

2
n1(8o) = nE( al'nl. ) =m) 81 9 . 16 |-6129105.453
80* Jo, 11798, 6  4+46,

Substituting fo in (2) we find the (N - R) 0, iterate

=0.23515625 - 228.3743/ 5542.6 = 0.193952794 while the (SOP) 6, iterate is 0,
=0.23515625 - 228.3743/6129105.453 = 0.23511898.
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Using computer we can obtain the following Table 2 which shows the
successive iterates accordindy. The entry Adjustment gives the value of correc-
tion to 04. The “Error” gives the value of | 0s - 0.

TABLE 2.
Successive iterations by two different methods listed above
Iterates I(N-R) 11 (SOP)
Oy 0.23515625 0.23515625
0, 0.193952794 0.23511899
0 0.191111196 0.20235096
*6; 0.191097551 0.19403251
B4 0.191097550 0.19203567
B 0.19097550 0.191097550*

Adjustment = 0.000001122
Error = 0.040587

In Table 3 we finally illustrate the probabilities of belonging to the five
classes taking into account that 6 = 0.19109755.

TABLE 3
Probabilities of crimes with hunting guns in Greece
Injuries Suicides Unwilfull Deaths Murders Threats
48& 1.74& 1.74& 5.21& 43.31&

A chi-square goodness of fit test at the level 2,5& gives x” = 8.72<x%025,3 = 9.348.
Hence, the null hypothesis cannot be rejected. In other words, the model pro-
vides a "good fit". (see Freund and Simon (1992) p. 380).

4. Conclusion

By means of the above somewhat peculiar and interesting sample, one
manages to touch upon topics like setting a parametric model, estimating via
(MLE) method the parameter, testing of hypothesis and interpretation the
results,

Furthermore we saw that in large samples application of iterative processes
is made on the MLE. The convergence of these processes is assured by the work
of Lehmann (1980). Also we see that the (N-R) method is rapidly convergent and
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is asymptotically better than the method (SOP). The true value of root springs
up at the 3rd iterate of the (N-R) method, while in the (SOP) method at the 5th
iterate. Note that for purposes of simplicity we constructed the above model so
that no third order or more equation arises.

Finally Table 3 shows that out of 100 greek persons hit by hunting guns
almost 48 are injured 2 commit suiside, 2 have unwilfull deaths, 5 are murdered
and 43 receive threats.
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