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Abstract 

In the recent few years an increasing effort has been made to establish reliable testing procedures to 

determine whether or not an observed time series is generated by a unit autoregressive root process. This 

paper presents in a selective manner some of the most common and widely used test statistics for testing 

for a unit autoregressive root and evaluates the performance of these test statistics in moderately large 

samples. (JEL Clas.: C120, C150, C220) 

1. Introduction 

Time series analysis has been extensively used by several sciences to explain 
the behavior of many physical, engineering and economic phenomena generated 
by random processes. In this framework, an objective is to correctly specify the 
process through which an observed time series is generated so that, for example, 
inference about future behavior can be made. 

According to the methodology of Box and Jenkins (1976), autoregressive 
integrated moving average models, known as ARIMA models, are fitted to the 
data following the identification, estimation and diagnostic check stages of 
model estimation. As part of the identification stage an effort is made to deter
mine whether the observed time series is generated by a stationary or non-
stationary process. 

Consider for example the ARIMA (p, d, q,) process 

Φ(Β) (1-B)dXt = Θ(Β)εt (1.1) 

where Β is the backshift operator, p and q are the orders of the polynomials Φ(Β) 
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and Θ(Β) respectively and the roots of the polynomial equations in ζ, Φ(ζ)=0, 

and Θ(ζ) = 0, are outside the unit root circle |z|= 1. An important issue in 

building models of the form (1.1) is determining an appropriate value of d, 

where d according to Box and Jenkink, methodology is a non-negative integer 

number. 

The process (1.1) is stationary if d is zero. However, if the process is non-

stationary, then, in the presence of a unit autoregressive root, it can be converted 

to a stationary and invertible process by first differencing assuming that there is 

only one unit autoregressive root. By transforming a non-stationary process 

in this way other characteristics of the generating model are more easily unco

vered. This determination as to whether or not a series should be differenced is 

known as the unit root test and d is called the number of unit autoregressive 

roots. 

It should be emphasized however that to determine whether an observed 

time series is stationary or non-stationary is not always the main concern in time 

series analysis. Think for example a stationary AR(1) process with a value of the 

autoregressive parameter close to one and a non-stationary random walk pro

cess. If the objective is to select one of the above models in order to use it only 

for making inference about future behavior then, in this case, it does not make 

any difference which one of these two models will be chosen since both models 

will generate very similar, if not identical, forecasts. 

To the contrary, the unit root issue is really very important in time series 

analysis if the objective is to estimate or to built a particular econometric mode. 

As it is known, the presence of a unit autoregressive root effects the estimates 

and therefore the test statistics (see for example Park and Phillips (1988, 1989) 

and Sims, Stock and Watson (1990) as well as the structure of the model in terms 

of applying the economic theory through time series analysis (see for example 

Granger and Newbold (1974, 1986), Harvey (1985, 1989), Engle and Granger 

(1987) and Johansen (1991)). 

The objective of this paper is to present in a selective manner, although the 

literature on unit root tests is vast, and to evaluate the performance of the most 

common and widely used test statistics for testing for a unit autoregressive root 

in moderately large samples. Section two introduces the Dickey-Fuller unit root 

test for the simple random walk process and for the AR(p) process. Sections 

three and four present the Dickey-Fuller type tests for ARIMA (p, 1, q) models 

based on the least squares estimation when the orders ρ and q are either 

unknown or known respectively. Section five displays the unit root test based on 
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the sample autocorrelations and, lastly, section six examines the class of frac
tionally integrated ARMA models, known as ARFIMA models, that nests the 
unit root phenomenon as a special case and in which the value of d is assumed to 
be a real number. 

2. The Dickey-Fuller unit root test 

Consider the simple first-order autoregressive process 

Χt = φΧt-1 + εt (2.1) 

where et is white noise and the mean of the process is taken to be zero. If |φ)<1 
then the process (2.1) is stationary whereas if |φ| then the process (2.1) is 
non-stationary. For the special case where φ=1 the process (2.1) becomes a 
random walk, i.e., 

ΔΧt = Xt - Xt-1 = εt (2.2) 

where Δ is the first difference operator. 

Getting an estimate of φ from model (2.1) is very simple. For example, 
given Τ observations, the least squares estimator of φ is 
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series Xt, t=l, 2, ..., T. is based on the regression of Xt on its one period lagged 
value Xt-1 in three different ways: 

a) with no mean 

b) with mean 

c) with mean and a linear time trend 

where et are identically and independently distributed as Ν(0,σ2) random 
variables. 
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3. The unit root test based on least squares estimation for ARIMA 

(p, 1, q) models of unknown orders 

The distribution of the Dickey-Fuller tests, as previously indicated, is based 
on the assumption that the structure of the error term is white noise. However, 
since most macroeconomic variables are generated by processes having moving 
average components, the assumption of the error term being a white noise 
process is very restrictive. Therefore if this assumption is violated the unit root 
test is not any longer valid. 

To eliminate the problem of time series generating models with moving 
average components Said and Dickey (1984) have initially derived the limit 
distribution of the test for testing for a unit autoregressive root for ARMA (p, q) 
models when the orders ρ and q are unknown. According to Said and Dickey 
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Hence equation (3.3) can be estimated by regressing ΔΧt on Xt-1, ΔΧt-1, ..., 
ΔΧt-k, where k is an integer number that specifies the number of autoregressive 
parameters. Notice that equation (3.3) is identical to equation (2.7), and accord
ing to Said and Dickey (1984), the test statistic for testing the unit root hypothe
sis, known as the τ test, will have the same distribution as that originally tabu
lated by Fuller (1979), but not the ρ test. As shown by Said and Dickey (1984) 
the limit distribution of the ρ test depends on the unknown moving average and 
autoregressive parameters and, therefore, the ρ test cannot be used in this case. 
Furthermore, this approach can be extended to any ARIMA (p, 1, q) process. 

Phillips (1987), on the other hand, has derived tests for testing for a unit 
autoregressive root that do not require any specifications of the orders of the 
autoregressive or the moving average parameter. Think for example a random 
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walk process in which the error term has an ARMA (p, q) presentation. The unit 
root test is based on estimating a non-augmented Dickey-Fuller regression, i.e., 
for the zero mean case, equation (2.4), and the τ test is defined as follows 
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in which the unit root hypothesis is true for all values of θ strictly less than one. 
If θ=1 then the process (3.6) is a white noise process. 

As shown by Agiakloglou and Newbold (1992) the performance of the 
"augmented" Dickey-Fuller test that was applied to processes generated by 
model (3.6) for various values of θ using samples of 100 observations is strongly 
affected by the order of the approximating autoregression, recalling that Agiak
loglou and Newbold (1992) tried values of k from 0 to 10, and by the magnitude 
of the moving average parameter. 

For small and moderate values of θ and taking k3 yields a test with 
approximately correct significance levels whereas for large values of θ the empir
ical significance levels are grossly infalted. On the other hand, for all values of 
the moving average parameter the test improves its performance, in the sense 
that the empirical significance levels approach the nominal level tests, as long as 
a high value of k is employed for the implementation of the "augmented" 
Dickey-Fuller test. Hence, it is less likely to reject the unit root hypothesis using 
a high value of k but, as indicated by Agiakloglou and Newbold (1992), the cost 
of using a high value of k is that the test losses its power. 

The proposed by Agiakloglou and Newbold (1992) AIC criterion —Akaike 
Information Criterion— which has the tendency to yield more heavily parame
terized models as apposed to SBC criterion —Scwarz Bayesian Criterion— 
failed to satisfactory select the right order of the approximating autoregression. 
Recall that the order of the approximating autoregression k is arbitrary defined 
by Schwert (1989) as proportional to the fourth root of the number of observa
tions T, divided by one hundred, i.e., lk=int{c(T/100)1/4 where c=4 or 12. Thus for 
series of 100 observations Schwert (1989) tried values of k equal to 4 and 12 
indicating that it is less likely to reject the unit root hypothesis for k=12. Said and 
Dickey (1984), on the other hand, obtained the final value of k by using a 
sequence of F — tests for various values of k. Unfortunately, such an approach is 
quite ambiguous and depends greatly on the significance level of the test. 
Moreover, it can be shown that the model selected by the AIC criterion will not 
be rejected against more elaborate models by an F — test for series of 100 observa
tions using a 5% significance level. 

To the contrary, Hall (1994) and Ng and Perron (1995) made an effort to 
determine the order of the autoregressive equation (2.7) by using sequential 
tests, a method in which the value of k is chosen according to the significance of 
the coefficient of the last lagged dependent variable. In other words, a series of 
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tests are applied to the coefficient of the last lagged dependent variable using 
either the specific-to-general or the general-to-specific approach and the final 
value of k is chosen when the coefficient of the last lagged dependent variable is 
statistical significant from zero. 

Hall (1994) examined these testing procedures to the pure autoregressive 
processes whereas Ng and Perron (1995) applied these procedures to processes 
that include moving average components. Both studies acknowledge the fact 
that the specific-to-general approach has the same asymptotic properties as a 
selection rule based on the information criteria, AIC or SBC, and therefore the 
chosen value of k will always be small whereas using the general-to-specific 
approach, starting at some predefined large value of k, it is more likely to select a 
high value of k than that selected by an information criteria with some loss of the 
power of the test. However, it should not be ignored the fact that the general-to-
specific approach similar to the sequence of F — tests approach proposed by Said 
and Dickey (1984) is sensitive to the critical values used for the determination of 
the significance of the last lagged dependent variable. Furthermore, a study by 
Agiakloglou and Newbold (1996) discusses the issue of the trade-off between size 
distortions and power loss when the ADF test is applied to processes like AR(1) 
and ARIMA(0, 1, 1) regard less of the method used to select the order of the 
approximating regression. 

Finally, Perron (1989) has presented a unit root test based on the "aug
mented" Dickey-Fuller regression (2.7) augmented by a time trend term and a set 
of three dummy variables to allow for a deterministic change at a given point of 
time. Critical values for this test can be obtained from Perron (1989). Apart from 
all the problems that may typically arise in terms of applying a unit root test and 
had already discussed, Newbold and Agiakloglou (1992) have shown that this 
particular unit root test is sensitive to the choice of the break point. Thus, if a 
single point exists, the model selected by the usual criteria for the series of the 
logarithm of the US common stock prices results in very weak evidence against 
the unit root hypothesis whereas the unit root hypothesis for the model chosen 
by Perron (1989) is rejected at the nominal 2.5% level test. Recall that Perron 
(1989) was able to conclude that for some of the series originally studied by 
Nelson and Plosser (1982) the unit root hypothesis can be rejected if a structural 
change is incorporated to the unit root test imposed to the series. 

In the vein, Leybourne et al. (1998) following the initial study of Perron 
(1989) explored in some detail the performance of the Dickey-Fuller tests in the 
presence of a break under the null hypothesis. According to the result applying 
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the Dickey-Fuller tests when the true generating process is integrated of order 
one, but with a break, can lead to a severe problem of spurious rejections of the 
unit root hypothesis especially when the break is early in the series. 

4. The Unit Root Test based on least squares estimation of ARIMA 

(p, 1, q) models when the orders ρ and q are known 

The unit root test is extended by Said and Dickey (1985) in the case where 
the orders ρ and q of an ARIMA (p, 1, q) process are known. As shown by Said 
and Dickey (1985) the unit root test for testing an ARIMA (p, 1, q) process 
against a stationary ARIMA (p+1, 0, q) process will follow the same asymptotic 
distribution originally tabulated by Fuller (1976). The estimation procedure is 
executed using the one-step Gauss-Newton least squares estimation and it is 
also discussed in Solo (1984). The difference is that the Solo (1984) test is a 
Lagrange Multiplier test whereas the Said and Dickey (1985) test is a Wald type 
test. 

Consider for example the time series Xt for t= 1, 2, .... Τ satisfying the 
following process 
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However, it should be emphasized that the objective in this case is not to 
indicate which method produces the most reliable estimates of the moving aver
age parameter, but to explicitly point out that the performance of this particular 
unit root test even for the simplest possible model with one moving average term 
is so sensitive to the initial value of a single parameter. 

Furthermore, Dolado and Hidalgo-Moreno (1990), contrary to the pro
posed one-step Gauss-Newton least squares estimation, proved asymptotically 
that unit root tests can be based on the estimates of an ARMA (1,1) model using 
one of the widely available packages for fitting ARIMA models. Unfortunately, 
empirical test results presented by Agiakloglou and Newbold (1992) that are 
based on generated series of 100 observations of model (4.1) with φ=1 and large 
values of Θ, using SPSS through maximum likelihood estimation, and using SAS 
through unconditional least squares, conditional least squares and maximum 
likelihood estimation in which the estimates are defined as in Anshley and 
Newbold (1980) do not support the theoretical results presented by Dolado and 
Hidalgo-Moreno (1990). Perhaps one explanation for such results is that asymp-
totics do not work for series of one hundred observations. 

Lastly, Pantula (1991) provides theoretical treatment of the case where the 
moving average root of the generating model approaches one. 



25 

5. The Unit Root Tests based on the Sample Autocorrelations of 

ARIMA (p. 1, q) models 

Bierens (1993) has developed a test statistic for testing for a unit autoregres
sive root based on the sample autocorrelations of an observed time series. The 
test statistic for a given time series Xt, t= 1, 2, ..., T, is defined in the following 
way 

where 

rk is the kth sample autocorrelation defined as 

Unfortunately, as shown by Agiakloglou (1996), the performance of the 
(5.1) test statistic for testing for a unit autoregressive root applied to processes 
generated by (3.6) for various values of the moving average parameter and for 
sample sizes of 100 and 300 observations is satisfactory only for the negative 
values of the moving average parameter as long as low values of k are used. On 
the other hand, for all positive values of the moving average parameter including 
the random walk process the test not only failed to produce empirical signifi
cance levels close to the nominal level tests but also in some cases the empirical 
significance levels were grossly inflated. Moreover, the empirical significance 
levels were far away form any nominal level tests if the proposed by Bierens 
(1993) values of μ=4 and k=12 and 14 for series of 100 and 300 observations 
respectively were used for all values of the moving average parameter. These 
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empirical results, as shown by Agiakloglou (1996), were also supported on theo
retical grounds in terms of applying the (5.1) unit root test to the means of the 
sample autocorrelations of ARIMA (0, 1, 1) models which can be estimated as a 
ratio of two quadratic forms in normal deviates (see for example Kendall (1954), 
Marriott and Pope (1954), Wichern (1973) and Kumar (1973) ). 

In essence, the performance of the (5.1) test statistic is strongly affected not 
only by the values of k or μ used for the implementation of the test but also by 
the values of the moving average parameter. The latter result can also been 
found in previous studies by Schwert (1989) and by Agiakloglou and Newbold 
(1992) in which they have indicated that the performance of the existing unit 
root test statistics is strongly affected by the presence or large positive values of 
the moving average parameter. To see this once more consider the model chosen 
by Bierens (1993) the ARIMA (1,1,1) process 

(1 - τΒ) (Xt - Xt-1) = (1 - θΒ)εt (5.3) 

where εt is white noise. Series of 100 observations are then generated by model 
(5.3) for values of τ= 0.95 and for values of θ= 0.5, 0.8 and 0.9 based in 1,000 
replications. In this case, the unit root test is conducted using values of μ=4 and 
k=12 proposed by Bierens (1993) and the null hypothesis is rejected at the 
nominal 5% level test 58, 08 and 267 times out of 1,000 trials for values of θ=0.5, 
0.8 and 0.9 respectively. 

6. Fractionally Integrated ARMA Processes 

Time series models have been recently analyzed, contrary to the traditional 
Box and Jenkins (1976) methodology, by allowing the degree of differencing to 
take any real value. The class of models that considers fractional integration, 
known as ARFIMA models, nests the unit root phenomenon as a special case 
and examines the behavior of a time series in a more general way than the 
standard ARIMA analysis. 

ARFIMA models are also known as long-memory models whereas stand
ard ARIMA models are known as short-memory models. The distinction 
between long-memory and short-memory processes is based on the degree of 
dependence between observations widely separated in time. If the degree of 
dependency between observations a long time apart decays much more slowly 
than the standard ARIMA process the process is called long-memory. This is the 
same to say that the autocorrelations of a long-memory process decay very 
slowly. 
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For a given time series Xt the ARFIMA model of orders (p, d, q) is written 
as in (1.1) where now 

and εt white noise. As shown by Granger and Joyeux (1980) and Hosking (1981) 
the process (1.1) is stationary if d<0.5 and all roots of the polynomial Φ(Β) are 
outside the unit root circle and it is invertible if d>-0.5 and all roots of the 
polynomial (Θ(Β) are outside the unit root circle. Of course, if the process is 
non-stationary it can be converted to a stationary process by differencing. 

Although fractionally integrated ARMA models have applications in both 
economics and hydrology, the genesis of such models can be actually found in 
hydrology, where the Hurst phenomenon is often studied (see for example 
McLeod and Hipel (1978)). Some theoretical and empirical studies for this type 
of models include Geweke and Porter-Hudak (1988), Li and McLeod (1986), 
Diebold and Rudebusch (1989, 1991 a, b), Porter-Hudak (1990), Sowell (1986, 
1990) and Yajima (1988). 

One of the methods that is frequently used, especially in applications to 
economic time series (see for example Diebold and Rudebush (1989) ), to esti
mate fractionally integrated models is the two-step estimation procedure pro
posed by Geweke and Porter-Hudak (1988). According to this approach, first an 
estimate of the fractional difference parameter is obtained. This estimate is then 
used to transform the series. Recall that in the case where d is a fractional 
number the (1-B)d term can be expressed as an infinite binomial series expansion 
in power of the backshift operator B. Then the traditional ARMA analysis is 
applied to the transformed seres to obtain estimates of the autoregressive and 
moving average parameters. 

The potentially most attractive feature of this approach is the method by 
which the estimate of the fractional difference parameter is obtained. As shown 
by Geweke and Porter-Hudak (1988) an estimate of d is obtained by estimating 
the following equation 

ln(I (λj) ) = α + βln[4sim2 (λj/2)] + ej (6.1) 

where β=-d, I(λj) is the periodogram of Xt at ordinate λj and the error terms εj, 
j=l, 2, ..., k, are independent and identically distributed with mean zero and 
variance π2/6. Geweke and Porter-Hudak (1988) established consistency and 
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asymptotic normality of the estimate of β provided that the number of ordinates 
in (6.1) is a function of sample size. In practice, k is often taken to be T1/2. 

Estimates of the fractional difference parameter d along with their standard 
error can therefore be obtained by ordinary least squares estimation of the 
Geweke and Porter-Hudak regression (6.1). Tests then for the fractional differ
ence parameter d are based on the usual t — statistic, although, the use of the 
theoretical variance of the error term of the Geweke and Porter-Hudak regres
sion is strongly recommended to increase the efficiency of the test. 

Unfortunately, as shown by Agiakloglou et al.(1993) for two simple ARMA 
processes, the AR(1) and the MA(1) process, the Geweke and Porter-Hudak 
estimation procedure of obtaining consistent estimates of the fractional differ
ence parameter is not reliable. Estimates of d may some times be seriously biased 
even for large sample sizes. Therefore, using the Geweke and Porter-Hudak 
approach as a test procedure to test the null hypothesis that d is zero can often 
lead to inconsistent conclusions. 

Evidence of the bias of the Geweke and Porter-Hudak (1988) estimation 
procedure is also reported by Hurvich and Ray (1995) for non-stationary and 
non-invertible fractionally integrated processes. 

Finally, Sowell (1992) has developed a maximum likelihood estimation 
procedure of obtaining simultaneously estimates of the autoregressive and mov
ing average parameters and the fractional difference parameter d. An approxi
mate maximum likelihood algorithm can also be found in Hipel and McLeod 
(1978), However, it should be taken into account the fact that, although for the 
traditional ARIMA analysis the presence or the absence of the unknown mean 
does not affect the estimates or the standard errors, for these particular 
ARFIMA processes evidence of bias in the presence of the sample mean as 
apposed to the unknown population mean is reported by Newbold and Agiaklo
glou (1993). 

7. Summary 

Although the unit root issue is really very important in time series analysis 
the existing testing procedures have failed so far for moderately large samples to 
successfully determine whether or not an observed time series is generated by a 
unit autoregressive root process. Perhaps one explanation to this sad pheno
menon is the fact that asymptotics do not work very well for small samples 
although in economics we typically do not have large samples. 
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Broadly speaking the decision as to whether or not to accept the unit root 
hypothesis is not merely a matter of simply applying say the "augmented" 
Dickey-Fuller test. In fact it is very difficult to believe that by choosing any 
arbitrary value of k to implement the "augmented" Dickey-Fuller test, based on 
the test statistic for testing the unit root hypothesis, can successfully determine 
whether the series is stationary or non-stationary. As discussed, the performance 
of the "augmented" Dickey-Fuller test is so significantly affected by the order of 
the approximating autoregression that an analyst will get different test results 
for different values of k (see for example Newbold et al (1993) ). 

Another way that an analyst can approach this problem is by simply apply
ing the traditional ARIMA analysis to the series. The benefit of using this 
approach is that on the one hand the ARIMA analysis does not depend on the 
number of the autoregressive parameters used to determine whether the series is 
stationary or not and on the other hand the traditional ARIMA analysis is 
independent of prior model specifications. 
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