EVALUATING THE PERFORMANCE OF LAIDS USING DIFFERENT PRICE INDICES AND MICRO DATA

By

Stathis Klonaris and Giannis Karagiannis Agricultural University of Athens and University of Ioannina, Greece

Abstract

The main objective of this paper is to evaluate the performance of the linear AIDS using different price indices and micro-data. The comparison is undertaken in terms of expenditure and price elasticities and the two-stage Heckman model is employed for the estimation of the relevant elasticities. All elasticities are adjusted to account the changes of the inverse Mills ratio. Comparing the overall performance of different linear AIDS approximations with the non-linear AIDS is seems that the one relying on corrected Stone price index performs better than the other approximations at least for the particular data set concerning Greek household food consumption (JEL Classification: C34, C43, D12).

Key Words: AIDS model, micro data, Heckman's two-stage approach, Food consumption in Greece.

1. Introduction

Since the early 1980s, the Almost Ideal Demand System (AIDS) is the most widely used demand system for both micro (i.e., household) and macro (i.e., aggregate) applied studies. A great part of AIDS popularity is due to its linear counterpart that can relatively easy be estimated econometrically. Specifically, Deaton and Muellbauer (1980) have shown that the AIDS could be transformed to a linear - in - parameters system of equations by approximating the expenditure deflator with the standard Stone price index. Otherwise the AIDS is non-linear in estimated parameters and rather complicated to be estimated econometrically.

During the last decade, several attempts have been made to provide more insights for the relationship between the non-linear and the linear AIDS (LAIDS). Two rather distinct lines of research have dealt with (i) how well the LAIDS approximates the true non-linear specification and (ii)

$$S_{ih} = a_i + \sum_j \gamma_{ij} lnp_{jh} + \beta_i (lnm_h - lnP_h)$$

(1)

$$lnP_{h} = \alpha_{o} + \sum_{i=1}^{n} \alpha_{i}lnp_{ih} + \frac{1}{2}\sum_{j=1}^{n}\sum_{i=1}^{n}\gamma_{ji}lnp_{jh}lnp_{ih}$$
(2)

The adding-up restriction requires $\sum_{i=1}^{n} a_i = 1$, $\sum_{i=1}^{n} \gamma_{ij} = 0$, and $\sum_{i=1}^{n} \beta_i = 0$. By imposing $\sum_{i=1}^{n} \gamma_{ij} = 0$ (i=1,...n) the homogeneity condition is met, and requiring $\gamma_{ij} = \gamma_{ji}$ for all *i*, *j* (*i≠j*) insures symmetry.

$$lnP_h^* = \sum_{i=1}^n s_{ih} lnp_{ih}$$
⁽³⁾

$$ln P_{h}^{s} = \sum_{i=1}^{n} s_{ih} ln(p_{ih}/p_{i}^{0})$$
(4)

$$lnP_{h}^{T} = \frac{1}{2} \sum_{i=1}^{n} (S_{ih} + s_{i}^{0}) ln(p_{ih} / p_{i}^{0})$$
(5)

$$\log P^{D} = \sum_{i=1}^{n} \left[\frac{1}{6} s(p_{h}, m_{h}) + \frac{2}{3} s(p_{h,0}, m_{h,o}) + \frac{1}{6} (p_{0}, m_{0}) \right] \log(p_{h} / p_{0})$$
(6)

R.	Urhan				
R ₂	Semi-urban				
R.	Pural				
N3	Kula				
Season	Eall				
5 <u>1</u>	Winter				
S2	Winter				
b 3	Spring				
54	Summer				
Regional Development S	ervices				
RDS	Evrou, Komotinis, Rodopis, Dramas, Kavalas				
RDS ₂	Thessalonikis, Central Macedonia				
RDS ₃	West Macedonia				
RDS ₄	Epiros				
RDS ₅	Region of Thessaly				
RDS ₆	Zakinthos, Cefalonia, Lefkada and Corfou				
RDS ₇	Etoloakarnania, Ahaia and Ilia				
RDS ₈	Biotia, Evia, Evritania, Fokida and Fthiotida				
RDS ₉	Greater Athens and perfecture of Attica				
RDS ₁₀	Peloponissos				
RDS11	Lesbos, Samos and Chios				
RDS ₁₂	Cyclades and Dodekanisa				
RDS ₁₃	Crete				
Head's Possition at the	Work				
PO ₁	Unemployed, Housekeeper, Pensioner and Student				
PO ₂	Wage earner				
PO ₃	Self-Employed				
PO ₄	Employer				
PO ₅	Trainee, or assistant in family business				
Head's Education Level					
ED ₁	Elementary Education				
ED ₂	Secondary Education: High School				
ED ³	Higher Education: University				
Family Composition	and the second second and the second				
FC1	Single Household				
FC2	Couple				
FC3	Couple with 1 till 3 children up to 16 years old				
FC4	One parent with 1 till 3 children up to 16 years old				
EC5	Other household composition				
Hand's Say	Other notaction composition				
M	Say of Hoad Male				
	Say of Head Famile				
	Jock of ficad remain				
Other Variables	Theory is a loss				
113	Household's size				
IN	Household monthly income				
1 2 3 7 7					

$$rp_{ih} = a_i + \sum_{r=1}^{12} c_r RDS_r + \sum_{n=1}^{3} d_n S_n + e_{ih}$$

$$s_{ih} = a_{ih} + \sum_{j} \gamma_{ij} ln p_{jh} + \beta_i (ln m_h - ln P_h) + \delta_i IMR_{ih} (7)$$

$$\alpha_i = p_{i0} + \sum_{k=1}^{s} p_{ij} d_j \ i=1, ...n$$
 (8)

$$s_{ih} = p_{i0} + \sum_{k=1}^{s} p_{ij}d_i + \sum_{j}^{n} \gamma_{ij}\ln p_{jh} + \beta_i\ln(m_h/P^*_h) + \delta_iIMR_{ih}$$
(9)

$$\sum_{i=1}^{n} p_{io} = I, \sum_{i=1}^{n} \gamma_{ij} = 0, \sum_{i=1}^{n} \beta_{i} = 0 \text{ and } \sum_{i=1}^{n} p_{ij} = 0$$
(10)

$$\sum_{j=1}^{n} \gamma_{ij} = 0 \text{ and } \gamma_{ij} = \gamma_{ji} \text{ for all } i,j \ (i \neq j)$$
(11)

$$s_{ih} = p_{io} + \sum_{k=1}^{s} p_{ij}d_{ih} + \sum_{j}^{n} \gamma_{ij}\ln p_{jh} + \beta_{i}\ln (m_{h}/P^{*}_{h}) - \sum_{j=1}^{n-1} \delta_{j}IMR_{jh}$$
(12)

$$e_{ij} = -\delta_{ij} + \gamma_{ij}/s_i - \frac{\beta_i \alpha_j}{s_i} - \frac{\beta_i}{s_i} \sum_k \gamma_{kj} ln p_k$$

$$E_i = 1 + \beta_i/S_i$$
(13)

$$e_{ij} = -\delta_{ij} + \frac{\gamma_{ij}}{s_i} - \frac{\beta_i}{s_i} - \{s_j + \sum_k s_k \ln P_k(e_{kj} + \delta_{kj})\}$$

$$E_i = I + \beta_i / s_i$$
(14)

$$M\hat{E}_{j}^{A} = \frac{\partial E[s_{i}|z_{i}=1]}{\partial \gamma_{ij}} I_{sample-mean} = \hat{\gamma}_{ij} - \hat{\delta}_{j}\hat{g}_{ij} \{\sum_{j=1}^{n} \ln \overline{p}_{i}\hat{\gamma}_{ij}I\overline{\hat{M}}R_{j}^{A} + (I\overline{\hat{M}}R_{j}^{A})^{2}\}$$
(15)

and

$$M\hat{E}_{i}^{B} = \frac{\partial E[s_{i}|z_{i}=0]}{\partial \gamma_{ij}} |_{sample-mean} = \hat{\gamma}_{ij} - \hat{\delta}_{j}\hat{g}_{ij} \{\sum_{j=1}^{n} \ln \overline{p}_{i}\hat{\gamma}_{ij}I\overline{\hat{M}}R_{j}^{B} + (I\overline{\hat{M}}R_{j}^{B})^{2}\}$$
(16)

 $M\hat{E}_{j} = \theta_{i}M\hat{E}_{j}^{A} + (1 - \theta_{i})M\hat{E}_{j}^{B}$

(17)

	NL	STONE	CORRE- CTED STONE	TORN- QVIST	EXACT
Bread & Cereals	-0.825	-0.847	-0.827	-0.810	-0.816
Meat	-0.760	-0.645	-0.781	-0.756	-0.754
Fish	-0.420	-0.360	-0.374	-0.365	-0.367
Oils & Fats	-0.451	-0.534	-0.466	-0.527	-0.529
Dairy Products	-0.988	-0.983	-0.978	-0.980	-0.979
Fruits & Vegetables	-1.039	-0.888	-0.951	-0.952	-0.950
Sugar & Confectionery	-0.863	-0.939	-0.865	-0.864	-0.863
Coffee, Tea etc.	-0.742	-0.744	-0.742	-0.738	-0.736
Other Foods	-0.643	-0.047	-0.721	-0.010	-0.011

	NL	STONE	CORRE- CTED STONE	TORN- QVIST	ЕХАСТ
Bread & Cereals	0.498	0.678	0.515	0.503	0.501
Meat	1.381	1.065	1.388	1.367	1.371
Fish	1.463	1.101	1.264	1.260	1.271
Oils & Fats	1.344	1.358	1.282	1.318	1.322
Dairy Products	0.895	0.896	0.844	0.872	0.862
Fruits & Vegetables	0.896	0.595	0.917	0.917	0.913
Sugar & Confectionery	0.964	1.274	0.977	0.972	0.968
Coffee, Tea etc	0.840	0.857	0.757	0.773	0.845
Other Foods	0.095	-0.312	0.026	0.002	0.013

	NL	STONE	CORRE- CTED STONE	TORN- QVIST	EXACT
Bread & Cereals	-0.750	-0.744	-0.749	-0.734	-0.741
Meat	-0.406	-0.371	-0.425	-0.405	-0.402
Fish	-0.315	-0.281	-0.283	-0.274	-0.276
Oils & Fats	-0.361	-0.444	-0.380	-0.439	-0.441
Dairy Products	-0.822	-0.817	-0.822	-0.818	-0.819
Fruits & Vegetables	-1.031	-0.882	-0.942	-0.943	-0.941
Sugar & Confectionery	-0.652	-0.659	-0.650	-0.650	-0.651
Coffee, Tea etc	-0.726	-0.728	-0.728	-0.723	-0.720
Other Foods	-0.663	-0.054	-0.720	-0.010	-0.011

- Asche, F. and Wessells C.R., (1997), On Price Indices in the Almost Ideal Demand System, *American Journal of Agricultural Economics* 79, 1182-85.
- Buse, A. (1994), Evaluating the Linearized Almost Ideal Demand System, *American Journal* of Agricultural Economics, 76, 781-793.
- Chalfant, J., (1987) A Globaly Flexible Almost Ideal Demand System, *Journal of Business* and Economic Statistics, 5, 312-26.
- Cox, L.T. and Wohlgenant M.K., (1986), Prices and Quality Effects in Cross-Sectional Demand Analysis, *American Journal of Agricultural Economics*, 68, 908-19.
- Deaton, A. and J., Muellbauer, (1980a) An Almost Ideal Demand System, American Economic Review, 70, 312-26.
- Feenstra, C.R. and Reinsdorf, B.M., (2000), An exact price index for the almost ideal demand system, *Economic Letter*, 66, 159-62.
- Gao, X.M. and Spreen, T., (1994), A Micro econometric Analysis of the U.S. Meat Demand, Canadian Journal of Agricultural Economics, 42, 397-412.
- Green, R. and Alston, J., (1990), Elasticities in AIDS Model, American Journal of Agricultural Economics, 72, 442-445.
- Hahn, F., W., (1994), Elasticities in AIDS Models: Comment, American Journal of Agricultural Economics, 76, 972-77.
- Heien, D.M., and G. Pompelli, (1988), The Demand for Beef Products: Cross Section Estimation of Demographic and Economic Effects, Western Journal of Agricultural Economics, 13, 37-44.
- Heien, D.M. and C.R. Wessels, (1990), Demand systems with Micro data: A Censored Regression Approach, *Journal of Business and Economic Statistics*, 8, 365-71.
- Heien, D.M. and C. Durham, (1991), A test of the Habit Formation Hypothesis using Household Data, *Review of Economics and Statistics*, 73, 189-99.
- Moschini G., (1995), Units of Measurement and the Stone Index in Demand Systems Estimation, *American Journal of Agricultural Economics*, 77, 63-68.
- Moschini, G, D. Moro, and R.D. Green, (1994), Maintaining and Testing Separability in Demand Systems, *American Journal of Agricultural Economics*, 76, 972-77.
- Park, J.L., R.B. Holcomp, K.C. Raper and O. Capps, Jr, (1996) Demand Systems Analysis of Food Commodities by U.S. Households segmented by Income, *American Journal of Agricultural Economics*, 78, 290-300.
- Pasardes, P., (1993), Bias in Estimating the Almost Ideal Demand System with the Stone Index Approximation, *Economic Journal*, **103**, 908-15.
- Saha, A., Capps, O. and Byrne, P., (1997) Calculating the marginal effects in models for zero expenditures in households budgets using a Heckman – type correction, *Applied Economics*, 29, 1311-1316.

59