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Abstract

In this paper we develop a computational procedure in order to find the efficient frontier, i.e. 
a non-decreasing curve representing the set of Pareto-optimal or non-dominated portfolios, for 
the standard Markowitz mean-variance model enriched with integer constraints. These constraints 
limit both the portfolio to contain a predetermined number of assets and the proportion of the 
portfolio held in a given asset. The problem is solved by adapting the multiobjective algorithm 
NSGA (Non-dominated Sorting Genetic Algorithm) that ranks the solutions of each generation 
in layers based on Pareto non-domination. The algorithm was applied in 60 assets of ATHEX 
and a comparison with a single genetic algorithm was realized. The computational results indicate 
that the procedure is promising for this class of problems. JEL Classifications: C61, C63, G11.
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1. Introduction

Every investor faces the problem of choice the appropriate assets in which 
he will invest his funds. To support such decisions, H.M. Markowitz set up some 
fifty years ago a quantitative framework, in which the selected portfolio is opti-
mum with respect to both the expected return and the variance of return and 
maximizes the so-called utility function (Markowitz 1952, Markowitz 1990). The 
optimal portfolio offers the highest level of expected return for a given level 
of risk and the minimum level of risk for a given level of return. All such port-
folios are called efficient and constitute the efficient frontier. The assumption 
that asset returns follow the normal distribution allows the finding of efficient 
frontier via quadratic programming. 

However, Markowitz mean-variance model has been criticised not only for 
the main assumptions it is based upon, but also because it neglects some impor-
tant aspects of portfolio performance in real life situations. As a result, some 
other measures of risk have been used, e.g. Value-at-Risk (Benati and Rizzi 
2007, Gilli and Këllezi, 2002); and additional constraints were introduced in the 
standard model in order, for example, to avoid very small holdings, to restrict 
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the total number of holdings and/or to take into consideration the round lot of 
assets that can be bought or sold in a bunch (Mitra 2003). 

Since these additional constraints lead to sets of discrete variables and 
constraints, the resulting optimization problem becomes quite complex as it 
exhibits multiple local extrema and discontinuities (Chang et al. 2000, Crama 
and Schyns 2003, Gilli and Këllezi 2002, Jobst et al. 2001). In such situations, 
especially in large-scale instances of the problem, classical optimization meth-
ods do not work efficiently and heuristic optimization techniques are the only 
alternatives for finding optimal or near-optimal solutions in a reasonable 
amount of time. Thus, researchers have experimented with the application of 
heuristic optimization techniques for finding the efficient frontier of the stand-
ard Markowitz model enriched with practical constraints. However, it must be 
noted that, although many metaheuristic algorithms have been developed in the 
past (Blum and Roli 2003), “few authors seem to have investigated the applica-
tion of local search metaheuristics for solving the portfolio selection problems” 
(Crama and Schyns 2003).

One of the first attempts for the use of heuristic optimization techniques 
to portfolio selection was made by Mansini and Speranza (1999). They have 
formulated the optimum portfolio choice with round lots as a mixed integer 
programming problem and they have proposed heuristics for its solution based 
upon the idea of constructing and solving mixed integer sub-problems, which 
consider subsets of the available investment choices. Chang et al. (2000) have 
extended the standard Markowitz model to include cardinality constraints as 
well as upper and lower bounds on the proportion of the portfolio invested in 
each asset. For finding the cardinality constrained efficient frontier the authors 
have applied three heuristic algorithms based upon genetic algorithms, tabu 
search and simulated annealing. For the same problem, Anagnostopoulos et al. 
(2004) have also proposed a GRASP algorithm enhanced by a learning mecha-
nism and a bias function for determining the next element to be introduced in 
the solution. Crama and Schyns (2003) have also applied a simulated annealing 
algorithm but they have extended the model to contain not only cardinality con-
straints and upper and lower bounds, but also trading and turnover constraints. 
Jobst et al. investigated the shape of the efficient frontier of the means-variance 
model including buy-in thresholds, cardinality constraints and round lot restric-
tions using a branch-and bound algorithm combined with heuristics (Jobst et al. 
2001).

In any case, the construction of the efficient frontier via quadratic program-
ming requires the optimization problem to be solved several times for various 
values of return. In this paper we confront the standard Markowitz model with 
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cardinality constraints as a bi-objective optimization problem in order to find 
the efficient frontier in a single execution of the algorithm. The problem is 
solved by a multiobjective genetic algorithm, which uses a non-dominated sort-
ing procedure to select the best parents. To the best of our knowledge, none 
of the related studies in the literature use a proper multiobjective algorithm to 
construct the Pareto front within the context of a portfolio selection problem 
such as the one considered in this work. The algorithm was applied in 60 assets 
of ATHEX and a comparison with a variant of the single (as opposed to mul-
tiobjective) genetic algorithm, which has been proposed by Chang et al. (2000), 
was realized. The computational results indicate that the procedure is very 
promising for this class of problems.

The rest of this paper is organized as follows. In Section 2, after a short 
review of the Markowitz model, the portfolio selection is defined as a multiob-
jective combinatorial problem. An adaptation of the Nondominated Genetic 
Algorithm (NSGA) for solving the problem is presented in Section 3. Section 4 
is devoted to our numerical results, and some concluding remarks are presented 
in Section 5.

2. The formulation of the problem

2.1 The Markowitz mean-variance model

The problem of optimally selecting a portfolio among N assets was formulat-
ed by H.M. Markowitz in 1952. H.M. Markowitz based on the assumption that 
every investor has the desire to achieve a predetermined return and to mini-
mize risk on investment. Mean or expected return is employed as a measure of 
return and standard deviation or variance of return is employed as a measure 
of risk. Among all portfolios there are special ones for which it cannot be said 
that one is better than the other. All such portfolios that are Pareto-optimal (or 
non-dominated) offer the maximum level of return for a given level of risk, or 
equivalently, the minimum level of risk for a given level of return. The inves-
tor should select a portfolio among the efficient portfolios. The proper choice 
among efficient portfolios depends on the willingness and ability of the investor 
to assume risk.

However, the main problem is to find this efficient frontier. Under the 
assumption of the normality of returns, this can be done by solving a quadratic 
optimization problem for all possible values of ρ, i.e. the desired level of return. 
The set of all optimal solutions constitutes the mean-variance frontier. It is usu-
ally displayed as a curve in the plane where the vertical axis denotes portfolio’s 
expected return, while the horizontal axis represents the variance of this return. 
Mathematically, the problem can be formulated as follows:
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min  (1)

subject to

 (2)

 (3)

w
i
 ≥ 0, i=1,..., N (4)

where
w

i
: the decision variable which denotes the proportion held of asset i 

r
i
: the expected return of asset i 
σ

ij
: the covariance between assets i and j
ρ: the desired level of return
Ν: the number of assets available 

The objective function (1) minimizes the total variance (risk) associated with 
portfolio, while equation (2) ensures that the portfolio has an expected return of ρ. 
Equations (3) and (4) describe budget and non-negativity constraints respectively. 
Budget constraint ensures that 100% of the budget is invested in the portfolio, 
while non-negativity constraints ensure that no asset has a negative proportion.

An alternative form of the model is often used in practice (see, for example, 
Anagnostopoulos et al. 2004, Chang et al. 2000) by removing the return con-
straint and replacing the objective function (1) by 

 (5)

Values of λ satisfying 0 ≤ λ ≤ 1 represent an explicit tradeoff between risk 
and return, and generate solutions between the two extremes λ = 0 and λ = 1. 
To draw the efficient frontier, the problem is repeatedly solved using several 
values of λ.

2.2 The multiobjective optimization model

For more realistic portfolio selection several extensions of Markowitz stand-
ard model have been proposed. In real financial decision-making, it is useful 
to avoid very small holdings, and to restrict the total number of assets. These 
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requirements can be modeled as threshold and cardinality constraints. In gen-
eral, both lead to sets of discrete variables and constraints.

Threshold and cardinality constraints can be added to the model using a binary 
variable z

i
, which is equal to 1 if the asset i (1 ≤ i ≤ N) is held in the portfolio and 

0 otherwise. Introducing finite upper and lower bounds ε
i
, δ

i
 for the stock weight 

w
i
, threshold constraints are represented by the following inequality

ε
i
 z

i
 ≤ w

i
 ≤ δ

i
 z

i
, i=1,...,N

To facilitate portfolio management or to control transaction costs, some 
investors may wish to limit the number of assets held in their portfolio. The car-
dinality constraint, which limits the portfolio to contain predetermined number 
of assets K, can be added to the model by counting the binary variables z

i
. This 

constraint is expressed by the following equation

When such constraints are added, the resulting mixed integer program 
becomes larger in size and computationally more complex than the standard 
mean-variance model.

In this paper we reformulate the quadratic optimization problem into a two-
objective optimization problem. This allows us to find the efficient frontier in a 
single execution of the algorithm. The vector objective function has as elements 
the portfolio return and the variance of return. Moreover our model has been 
enriched with threshold and cardinality constraints.

The problem to be solved is formulated as follows

opt f(w)=[f
1
(w), f

2
(w)]

subject to

ε
i
 z

i
 ≤ w

i
 ≤ δ

i
 z

i
, i=1,...,N

z
i
 =0 – 1

The objective function f
1
(w) represents portfolio’s return while the objective 

function f
2
(w) represents portfolio’s variance of return. The N-vector w denotes 

the set of decision variables w
i
.
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3. The multiobjective algorithm

Multiobjective genetic algorithms have gained much attention last years in 
solving optimization problems with multiple objectives (Coello Coello 2000, 
Deb 1999). The primary reason of these studies is the unique feature of genetic 
algorithms to use a population of solutions. This allows multiple Pareto-optimal 
solutions to be found in a single simulation run. It appears that the first who 
tried to use genetic algorithms for finding the Pareto frontier in a multiobjec-
tive optimization problem was Schaffer (1985). Although his Vector Evaluated 
Genetic Algorithm (VEGA) gave encouraging results, it suffered from bias-
ness towards some Pareto-optimal solutions. To overcome this problem, it is 
suggested the use of both techniques, a non-dominated sorting procedure to 
move a population toward the Pareto front and some kind of niching technique 
to keep the GA from converging to a single point on the front. Based on this 
suggestion a number of independent GA implementations have been proposed, 
for example the MultiObjective Genetic Algorithm (MOGA) (Fonseca and 
Fleming 1993) and the Niched-Pareto Genetic Algorithm (NPGA) (Horn et al. 
1994).

Srinivas and Deb (1995) proposed the Nondominated Genetic Algorithm 
(NSGA) which is based on several layers of classifications of individuals. Before 
selection, a procedure ranks the solutions of each generation in layers based 
on Pareto non-domination. Firstly, the nondominated individuals are identi-
fied so that to constitute the first nondominated front; and they are assigned a 
large dummy fitness value, which is proportional to population size, to provide 
an equal reproductive potential to all these nondominated individuals. To 
maintain diversity in the population classified individuals are shared with their 
dummy fitness values. Sharing is achieved by dividing each individual’s dummy 
fitness value by a niche count which is proportional to the number of individuals 
one has in its neighborhood. The parameter niche count for every individual i 
in the front is calculated by the following equation

where Sh(d
ij
) is the sharing function, d

ij 
is the phenotypic distance between 

individuals i and j, and M is the number of individuals in the current front. 
Sharing function is expressed by the equation

where usually α = 1, and σ
sh

 is the maximum distance allowed between two 
individuals.
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Sharing function plays an important role in NSGA’s performance, and it is 
strongly depended on the appropriate selection of the parameter σ

sh
. The method 

proposed by Deb and Goldberg for estimating σ
sh

 seems do not to work efficiently 
in our problem. This is probably due to the additional integer constraints which 
limit the search space. Thus, the algorithm was executed several times for differ-
ent values of the parameter σ

sh
, which was kept smaller than the initial value com-

puted by Deb and Goldberg’s method, until the best efficient frontier was found. 
After sharing, these individuals are ignored temporarily and the second front of 
nondominated individuals is identified. These new set of points are assigned a new 
dummy fitness value which is kept smaller than the minimum shared fitness value 
of the first front (95% of the smallest shared fitness value of the previous front). 
The process continues until all individuals in the population are classified.

P ← randgeneratepopulation() /* Initial population P
generation ← 0
do while generation < maxgenerations 

find the vector of decision variables for each individual i ∈ P
compute variance and return ∀i ∈ P
k ← 0
D

k
 ← ∅ 

F
k 
← ∅ /* the kth front of individuals

do until P = ∅ begin /*sorting procedure
k ← k+1 
for all i ∈ P and for all j ≠ i ∈ P

if for any j, individual i is dominated by j then

D
k
 ← D

k-1
∪{i}

else
F

k
 ← F

k-1
∪{i}

end if 
end for
P ← P − D

k

assign dummy fitness in each i ∈ F
k

apply sharing function in F
k
 

end do
P ← F

1
∪…∪F

k

recombine P according to shared fitness value
mutate P
generation ← generation + 1 

end do

Figure 1. Pseudocode of the algorithm
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The population is then reproduced according to the shared fitness value. 
A stochastic remainder proportionate selection is used in this approach. Since 
individuals in the first front have the maximum fitness value, they always get 
more copies than the rest of the population. This allows the search for non-
dominated regions and sharing helps to distribute the population over this 
region. The efficiency of NSGA lies in the way multiple objectives are reduced 
to a dummy fitness function using nondominated sorting procedure. Another 
aspect is that any number of objectives can be solved and both minimization 
and maximization problems can be handled (Srinivas and Deb 1995). The pseu-
docode of the algorithm is shown in Figure 1.

A crucial aspect in genetic algorithms is how to represent a solution. The 
chromosome is divided into two parts. The first part is a set A of K distinct assets 
and the second one is a set B that includes K real numbers associated with each 
asset i.

Then, in order to find the proportion of each asset, the free portfolio propor-
tion is calculated as follows

Thereafter, the proportion associated with each asset in the portfolio is cal-
culated by the following equation

In this way all the constraints are satisfied.
The offspring are generated by uniform crossover as described below. If an 

asset is present in both parents it is present in the children with the correspond-
ing associated value n. The remaining non-common assets are then selected 
randomly to fulfill children’s sets. An example can be seen in Table 1.

Children are also subject to mutation by multiplying by 0.9 or 1.1 (chosen 
with equal probability) the value n

i
 of a randomly selected asset i. The next gen-

eration of individuals completely replaces the current population. 
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TABLE 1

Crossover example

Parent 1
10 20 30 40 50

0.1 1 0 0.7 0.8

Parent 2
10 20 5 15 25

0.9 0 0.6 0.4 1

Offspring 1
10 20 30 5 25

0.1 0 0 0.6 1

Offspring 2
10 20 40 50 15

0.9 1 0.7 0.8 0.4

4. Computational results

The algorithm has been implemented in Visual Basic and run on a personal 
computer Pentium 4 at 2.4 GHz. To construct the data set, 60 assets of big και 
medium capitalization from Athens Exchange were considered and weekly 
prices from 10-5-2005 to 12-5-2006 were used to calculate returns and covari-
ances. The weekly return r

it
 of the asset i in the period t was calculated according 

the equation

where τ e
it
 (τ b

it
) is the closing price of asset i at the end (beginning) of period t 

and d
it
 is the dividend paid to shareholders in period t.

We tried to find the efficient frontier for different values of K and especially 
for K = 2, 5, 10. For all these problems lower and upper bounds were 1% and 
100% respectively, i.e., ε

i
 = 0.1, δ

i
 = 1 ∀i ∈ A
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Figure 2. The initial population

In order to see the algorithm performance, an initial population has been ran-
domly generated (Fig. 1). Figures 2, 3 and 4 represent the cardinality constrained 
efficient frontier for K = 2, 5, 10 respectively. As we can see from these outputs, 
the algorithm has found many Pareto-optimal points with good distribution along 
the efficient frontier. The number of generated points and their distribution are 
crucial aspects in multiobjective optimization.

Figure 3. The efficient frontier, K = 10
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Figure 4. The efficient frontier, K = 5

Figure 5. The efficient frontier, K = 2

If the multiobjective algorithm converges in a small region near or on the true 
Pareto-optimal front, the purpose of multiobjective optimization is not served. 
This is because, in such cases, many interesting solutions with large trade-offs 
among the objectives and parameter values have been probably undiscovered. 
Table 1 illustrates this distribution of points for each problem instance, together 
with important parameters of the algorithm.
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TABLE 2

Parameters of the problem

Κ = 10 Κ = 5 Κ = 2

Population size 1000 1000 1000

Probability of crossover 0.7 0.7 0.7

Probability of mutation 0.1 0.1 0.1

σ
sh

0.25 0.15 0.05

Max number of generations 200 100 100

Efficient solutions 448 (44.8%) 385 (38.5%) 750 (75%)

We have also implemented a variant of the genetic algorithm proposed in 
Chang et al. (2000). The differences between their genetic algorithm and our algo-
rithm are, one the one hand, the complete replacing of the solutions (as in our 
multiobjective algorithm) versus the partial remplacing and, on the other hand, 
the rank selection versus the tournament selection. Because of limited space, only 
some of the obtained results are presented.

Figure 6. The efficient frontier generated by the single genetic algorithm, K = 10

In order to compare the quality of solutions obtained by the multiobjective 
genetic algorithm and the single objective genetic algorithm, we use the tech-
nique proposed in (Jaszkiewicz 2000). The multiobjective genetic algorithm is 
considered not worse than the single objective if 



197

where s
l
 is the scalarizing function, wsl the best solution obtained by optimi-

zation of s
l
 with the single GA and wml the best solution on s

l
 selected from the 

set of Pareto-optimal solutions generated by the multiple objective GA. Figure 
6 shows the solutions obtained by optimizing 81 objective functions (l = 1,…, 
81) with single objective GA, defined for values λ = 0 to 1 with step 0.0125 (see 
Equation 5). Since 

we may compare the computational requirements of the two approaches. 
The effectiveness index is equal to

where CT
s 
is the average running time the single objective GA spent on 

optimization of s
l
 and CT

m
 the running time the multiobjective GA needs to 

generate the Pareto-optimal solutions s
1
…s

L
. These results are based on the 

Pareto front generated from the multiobjective algorithm with 200 generations. 
If the generations are equal to 50 (although the Pareto front is slightly inferior), 
the equation is still verified and the EI is equal to 6,025. Thus we can conclude 
that the generation of the Pareto-optimal solutions with NSGA is competitive 
both from the computational effectiveness point of view and the quality of the 
Pareto front.

5. Conclusions

Constraints in the size of the portfolio and in lower and upper bounds on 
the proportion of the portfolio held in a given asset transform the standard 
Markowitz model in a mixed integer optimization problem and create disconti-
nuities in the efficient frontier. In this paper we adapt the multiobjective algo-
rithm NSGA for finding the cardinality constrained efficient frontier.

We argue that the proposed procedure solves efficiently the cardinality 
constrained portfolio optimization problem as it generates in relatively short 
computational time a large number of Pareto-optimal solutions, which are 
uniformly distributed along the efficient frontier. Even if the efficient frontier 
is not continuous and, then, competition among solutions may lead to extinction 
of some sub-regions, the algorithm finds a large number of Pareto-optimal 
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solutions in every segment. On the other hand, the procedure is in general 
time consuming, since the quality of solutions depends on the population size, 
but this shortcoming is balanced by the fact that the efficient solutions are 
obtained after a small number of generations. Finally, a further difficulty is the 
appropriate selection of σ

sh
 as the algorithm performance is highly dependent 

on this value.
Constraints in the size of portfolio and in lower and upper bounds on the 

proportion of the portfolio in a given asset help the decision maker to facilitate 
its portfolio management; and to avoid excessive transaction costs on one hand, 
and to avoid holding very small/large amounts of any particular asset on the 
other. It is empirically known that much of the portfolio risk can be diversified 
by holding a rather small number of assets (Maringer 2005, ch. 4). We have 
solved for the efficient frontier following the tradition of standard Markowitz 
approach, however, focusing on the case where the investor wants to invest in 
exactly K out of N number of assets. Furthermore, portfolios with positions in 
assets with very small amounts have been excluded through the use of threshold 
constraints. The resulting efficient frontier gives the best possible trade-off risk 
against return for a particular number of assets (K). The investor then examines 
the trade-off points in the possibilities curve and selects the one particular point 
of interest. This may be the point with the lowest variance but having the low-
est return, located in the lower left part of the frontier; or it may be the point 
with the maximum expected return but with the maximum risk, located in the 
right upper part of the frontier; or it may be any intermediate point. The proper 
selection of the particular point depends on the investor’s willingness to assume 
risk. In the next step, the investor implements the one particular portfolio 
whose image is the point in the nondominated frontier. Furthermore, solving 
for different values of K, the trade-off between risk, return and the number of 
assets of the portfolio could be examined.

Currently our research focus on a generalization of the cardinality con-
strained mean-variance problem, by including class constraints that limit the 
proportion of the portfolio that can be invested in assets in each class, such as 
bank stocks, telecommunication stocks etc. For its solution, procedures of the 
so called second generation multiobjective genetic algorithms are tested.
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