OIKONOMIKAI KOIN ω NIKAI TEXNIKAI
 $\Sigma П О Y \Delta A I$

EK \triangle OII $\operatorname{TH\Sigma ANWTATH\Sigma BIOMHXANIKH\Sigma \Sigma XOAH\Sigma ~}$

TMHMATIKAI $\triangle I A P O P \Omega \Sigma E I \Sigma$

Eİ THN KANONIITIKHN OIKONOMIKHN ANAAYミIN

'Үтò т $\omega \nu$ к. к. А. Г. ПAПANAPEOY \& A. A. $\triangle A Z A P H$

$$
\begin{align*}
& \mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G} \\
& \left.\mathrm{C}=\alpha \mathrm{Y}{ }^{1}\right) \tag{1}
\end{align*}
$$

öтои $\mathrm{Y}=$ Ẻ̉бо́б $\eta \mu \alpha$
$\mathrm{C}=\mathrm{K} \alpha \tau \alpha v \alpha \alpha^{\lambda} \omega \sigma \iota s$
I = 'ETźvסvals

$\alpha=\rho о \pi \eta ̀ ̀ ~ \pi \rho o ̀ s ~ к \alpha т \alpha v \alpha ́ \lambda \omega \sigma \omega$.

[^0]
11. 12. 2

$$
\begin{equation*}
\left.\bar{Y}=\frac{1}{1-\alpha} \right\rvert\,+\frac{1}{1-\alpha} G \tag{2}
\end{equation*}
$$

 $\tau \alpha \beta \lambda \eta \tau \grave{\alpha}_{s}(1, G)$.

 тท̃s (2) ஸ̀s mpòs I:

$$
\begin{equation*}
(1-\alpha) \bar{Y}-\bar{G}=1 \tag{3}
\end{equation*}
$$

 ठıóp $\theta p \omega \sigma ı v:$

$$
\begin{equation*}
\bar{Y}=\frac{1}{1-\alpha} I+\frac{1}{1-\alpha} G, \quad \bar{G}=G \tag{4}
\end{equation*}
$$

 é $\varsigma i \sigma \omega \sigma$.

 aủӨવípetov.

 $\mu \alpha ̀ s ~ T \tilde{\omega} \nu$ oì

 סо入oүíav Tñs kavoviotikñs (normative) oỉko-

Ex. 1
 "OÚvo

11. 12. 4

 סouv Tò đủTò धỉoó $\delta \eta \mu \alpha\left({ }^{5}\right)$.

 $\theta \varepsilon i \alpha \alpha s \Gamma_{1} \Delta_{1}^{\prime} \Gamma_{2} \Delta_{2}^{\prime} \ldots$ тоũ बXŋju. 2.

$$
\begin{equation*}
\bar{Y}_{1}=\frac{G}{1-\alpha}+\frac{1}{1-\alpha} \tag{5}
\end{equation*}
$$

Ex. 5
 - σ ต

$$
\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}_{3}<\mathrm{K}_{4}
$$

'O ovvסט
 $\sigma o ́ \delta \eta \mu \alpha \bar{Y}_{2}$ ($\beta \lambda . \sigma X .5$).

$$
\begin{aligned}
& Y=\frac{1}{1-\alpha} I+\frac{1}{1-\alpha} G(7) \\
& Y=\varphi(\bar{N})=\bar{Y} \quad \text { кגì } I \leqslant \bar{I}
\end{aligned}
$$

$$
\begin{equation*}
\bar{Y}=\frac{1}{1-\alpha} I+\frac{1}{1-\alpha} G, \quad \bar{I}=I+\Lambda \tag{9}
\end{equation*}
$$

Ex. 6

 عis т

 G I, ŋ̀ व́piotn λ ט́бis $\theta \dot{\alpha}$ ouvíotato हis tìv

 Ү10т0т01

Nờ عúp $\varepsilon \theta$ ñ :

$$
\begin{equation*}
\frac{1}{1-\alpha} G+\frac{1}{1-\alpha} I=Y=\mu^{\prime} \gamma 1 \sigma \tau 0 \nu \tag{10}
\end{equation*}
$$

Úmò toùs meplopiouoús

$$
\begin{align*}
& \mathrm{G} \leqslant \overline{\mathrm{G}} \\
& \mathrm{I} \leqslant \overline{\mathrm{I}} \\
& \hat{\eta} \mathrm{G}+\Lambda_{1}=\overline{\mathrm{G}} \\
& \mathrm{I}+\Lambda_{2}=\overline{\mathrm{I}}
\end{align*}
$$

$\sum \mathrm{E} 7$

 тต̃v $\pi \lambda \alpha \iota \sigma i \omega \nu$ toũ mapóvtos apopou.

[^0]: otevoiv.

