ΕΝ ΟΙΚΟΝΟΜΕΤΡΙΚΟΝ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ

Τού κ. ΝΙΚΟΛΑΟΥ Β. ΑΛΕΞΟΠΟΥΛΟΥ

Πτυχιούχοι Πανεπιστημίων Bristol και Surrey (Αγγλία)

Εἰσαγωγή

Τὸ παρὸν μακρο-οικονομικὸν ὑπόδειγμα προσπαθεῖ νὰ περιγράψῃ τὸς συναρτησιακὸς σχέσις ἐς τὴν ἑλληνικὴν οἰκονομίαν κατὰ τὴν περίοδον 1954–1967. Ἀποτελεῖται δὲ ἀπὸ ἑπτά διαρθρωτικὰς ἕξισωσεις. Αἱ ἕξισώσεις αὐτὰ ἐκφράζουν τὸς ὑπορχοῦσας ἀλληλεσυχαστικός μεταξὺ τῶν ἐκ παρατηρήσεως μεταβλητῶν καὶ εἶναι γραμμικοί εἰς ἀμφότερα τὰς μεταβλητὰς καὶ τὰς παραμέτρους.

Κύριος σκοπὸς τοῦ ὑποδείγματος εἶναι ὁ υπολογισμὸς τῶν διαρθρωτικῶν παραμέτρων καὶ βάσει αὐτῶν ἡ εὑρεσίς τῶν παραμέτρων τῆς ἀνθυγμένης μορφῆς (reduced form). Κατόπιν εἶναι εὐκολον νὰ κάμουμε συγκρίσεις μεταξὺ τῶν εὑρεθέντων καὶ κυρίως νὰ συγκρίνουμε τὴν ἀποτελεσματικότητα τῆς νομισματικῆς καὶ δημοσιονομικῆς πολιτικῆς ἐπί τοῦ θηνικοῦ εἰσοδήματος.

Δεκατρεῖς εἶναι οἱ χρησιμοποιεῖται μεταβλητές ὑπὸ τοῦ ὑποδείγματος. Ἐπτά εἶναι αἱ ἐνδογενεῖς μεταβληταί, δηλαδή, μεταβληταί οἱ ὅποιοι προσδιορίζονται ὑπὸ τοῦ ὑποδείγματος καὶ εἰς προκαθορισµένοι μεταβληταί. Δύο δὲ ἐκ τῶν εἰς προκαθορισµένων εἶναι ἐνδογενεῖς μεταβληταί μὲ ὑστέρησιν ἐνὸς ἐτῶς, καὶ τέσσερα εἶναι ἐξωγενεῖς μεταβληταί προσδιορίζοµεναι ἐξών τοῦ ὑποδείγματος ἐκ τῆς οἰκονομικῆς πολιτικῆς. Ἡ παρουσία τῶν μὲ ὑστέρησιν μεταβλητῶν κάµνει τὸ ὑπόδειγμα τοῦτο δυναμικός, δηλαδή, αἱ ἐξιαί τῶν τρεχοντῶν ἐνδογενῶν μεταβλητῶν δύνανται νὰ προσδιορισθοῦν ἐκ τῶν προηγοµένων αὐτῶν ἐξιῶν, τῶν λοιπῶν συντελεστῶν παραμετρῶν σταθερῶν.

Ἀἱ ἕξισώσεις τοῦ ὑποδείγματος εἶναι αἱ ἕξις ὡς:

1) Ἡ συνάρτησις τῆς καταναλώσεως
2) Ἡ συνάρτησις ἐπενδύσεων
3) Ἡ φορο-εἰσοδηματικὴ συνάρτησις
4) Ἡ συνάρτησις τῶν εἰσαγωγών
5) Ἡ συνάρτησις τοῦ ἐπιτοκίου
6) 'Η ταυτότητα τού ἑθικοῦ εἰσοδήματος
7) 'Η ταυτότητα τοῦ διαθέσιμου ἑθικοῦ εἰσοδήματος.

Αἱ πέντε πρῶται ἔξισώσεις περιέχουν εἰς τὴν δείκται πλευράν τῶν τῶν ὅρων σφάλματος (error term), δ ὁποίοι μᾶς δεικνύει τὴν ἐπίθεσιν ὅλων τῶν σχετικῶν μεταβλητῶν, αἱ ὁποίαι δὲν ἔχουν περιληφθῇ εἰς τὰς ἔξισώσεις διὰ διαφόρους αἰτίας.

Βασικὴ μεταβλητὴ τοῦ ὑποδείγματος εἶναι τὸ ἑθικὸν εἰσόδημα.

1. \(C_t = \alpha_0 + \alpha_1 Y^d_{t-1} + \alpha_2 C_{t-1} + U_1 \)
2. \(I_t = \beta_0 + \beta_1 Y_{t-1}^d + \beta_2 r + U_2 \)
3. \(T_t = c_0 + c_1 Y_t + U_3 \)
4. \(M_t = d_0 + d_1 Y^d_t + d_2 R_{t-1} + U_4 \)
5. \(r_t = e_0 + e_1 Y_t + e_2 S_t + U_5 \)
6. \(Y_t = C_t + I_t + G + X - M_t \)
7. \(Y^d = Y_t - T \)

Παρατηροῦμες τὴν ταυτότητα τοῦ ἑθικοῦ εἰσοδήματος βλέπομεν ὅτι αἱ ἔξωγυγαι καὶ αἱ κυβερνητικαὶ διαπάνω εἶναι ἔξωγυγεις μεταβληταί.

Βεβαίως δὲν θα πρέπει νὰ εἶμεθα ἐντελῶς ἱκανοποιημένοι ἐκ τῆς χρησιμοποιήσεως τῶν ἔξωγυγων ὥστε ἔξωγυγεις μεταβλητῆς, διότι αἱ ἔξωγυγαὶ μας ἐν μέρει ἔχουσαν καὶ ἐκ τῶν ἐξωγυγικῶν τιμῶν μας, ἐν σχέσει πρὸς τὰς ἔξωγυγικὰς τιμὰς τῶν ἀνταγωνιστικῶν ἄρρητων καὶ ἔκτις ἐκ τῆς παραγωγῆς μας.

'Αλλ' ἐπειδὴ ἡ ἔλαστικότητα ὅσον πρὸς τὴν τιμὴν τῶν ἔξωγυγων μας, ὡς καὶ ἡ εἰσοδηματικὴ ἔλαστικότητα αὐτῶν εἶναι πολὺ μικρά, χρησιμοποιοῦμεν τὰς ἐξαγωγὰς ὡς ἔξωγυγες μεταβλητῆς. Ἐπίσης ἡ προσφορὰ χρήματος λαμβάνεται ὡς καθαρὸς ἔξωγυγης μεταβλητὴ. Δηλαδή, ἡ προσφορὰ χρήματος παραμένει σταθερὰ οἰκονομικῶν καὶ ὡς εἶναι ἡ κατάστασις τοῦ ἰσοζυγίου πληρωμῶν.

'Ενδογενεῖς μεταβληταί

1. \(C = \) Κατανάλωσις
2. \(Y^d = \) Διαθέσιμον ἑθικοῦ εἰσόδημα
3. \(T = ^{"}Αμεσοί φόροι \)
4. \(I = ^{'}Επένδυσις (ἀκαθαρήστη τοῦ ἰδιωτικοῦ παγίου κεφαλαίου) \)
5. \(Y = ^{'}Εθικὸν εἰσόδημα \)
6. \(M = Εἰσαγωγεῖς ἀγαθῶν καὶ ύπηρεσιῶν \)
7. \(r = ^{'}Αναπροεξοφλητικὸν ἐπιτόκιον \)
Προκαθωρισμέναι μεταβληται

8. G = Κυβερνητικα διαπάνω
9. X = 'Εξαγωγαί (άγαθων - ύπηρεσίων)
10. S = Προσφορά χρήματος
11. \(R_{t-1} = \) Χρυσός και έξια συναλλαγματικά άποθέματα κρατούμενα υπό τῆς Τραπέζης 'Ελλάδος
12. \(C_{t-1} = \) Κατανάλωσις με ύστερησιν ενός έτους
13. \(Y_{t-1} = \) Διαθέσιμον θυνικών ελισόδημα με ύστερησιν ενός έτους.

Είναι γενικά παραδεκτός ότι η κατανάλωσις του προηγουμένου έτους επηρεάζει την κατανάλωσις του πρέχοντος έτους. Τοιούτοιτόπου έχουμε συμπεριλάβει την κατανάλωσιν με ύστερησιν ενός έτους ως την δευτέρα προσδιοριστική μεταβλητή τής συναρτήσεως.

'Η έπενδυσις έχει εκφρασθεί ως συνάρτηση του διαθέσιμου εσοδήματος με ύστερησιν ενός έτους και του επιτοκίου.

Βεβαίως θα ήτο προτιμότερον να διαχωρίσουμε την συνολική ιδιωτικήν έπενδυσιν εις δύο μέρη. Εις έπενδυσις παγίων εγκαταστάσεων και εις έπενδυσις κατασκευής κατοικιών. Ο τοιούτος διαχωρισμός είναι λογικός διότι έχουμε διαφορετικά κίνητρα επένδυσεως εις τός ός άνω κατηγορίας. 'Επειδή δεν θα πρέπει να παραβλεφθεί ότι το 35 % περίπου των συνολικών επενδύσεων άποτελούν αι έπενδυσέως εις κατοικίας.

Το μέγεθος του υποδελματος μάς άναγκαζει εις το να συμπεριλάβωμε εις αυτό μόνον μιαν έξισωσιν έπενδυσεων. Το εθνικόν εσοδήμα, η κύρια μεταβλητή εις την έξισωσιν χρησιμοποιείται με ύστερησιν ενός έτους. Τούτο είναι: λογικόν, διότι οι έπενδυσίες δεν αποφασίζουν να έπενδυσον βάσει των άποτελεσμάτων της προηγουμένης χρήσιμης. Έτσι τίποτε έξισωσιν μάς δίδει τους αμέσους φόρους ως συνάρτηση του εσοδήματος. Μία σταθερά έχει περιληφθεί εις αυτήν την έξισωσιν.

'Η τετάρτη έξισωσις μάς δίδει την συνάρτηση των εισαγωγών.

Το διαθέσιμον εθνικόν εσοδήμα αποτελεί κύριον προσδιοριστικόν παράγοντα των εισαγωγών. Δεδομένου όμως ότι το ύψος των συναλλαγματικών άποθεμάτων εις τάς έν αναπτύξει χώρας άποτελεί κρίσιμον μέγεθος διά των καθορισμών τής πολιτικής επί των εισαγωγών, δεικνύουν τήν ικανότητά τής χώρας να ελάσει ελευθέρως, έθεωρήσαμε σκόπιμον την έξισωσιν τής μεταβλητής ταύτης εις τήν έξισωσιν μας.

Τα στοιχεία είναι εκπερασμένα εις σταθεράς τιμώς με βάσιν το έτος 1958.

Λόγω της ύπερταυτοποιήσεως (over - identification) ολου των εξισώσεων του ύποδειγματος αυτού ή μέθοδος των ελαχίστων τετραγώνων εις δύο στάδια (two stages least squares, T.S.L.S.) έχει χρησιμοποιηθή. 'Η μέθοδος των ελαχίστων τετραγώνων έχει έπίσης χρησιμοποιηθή διά λόγους συγκρίσεως και μόνον.

Υπολογισθέναι εξισώσεις διά τής μεθόδου των ελαχίστων τετραγώνων

Συνάρτησις κατανάλωσεως

\[
C = 1180,44 + 0,7222 Y^d + 0,2006 C_{t-1} \\
(1183,58) \quad (0,138) \quad (0,093)
\]

\[
R^2 = 0,9978
\]

\[
D.W. = 2,7177
\]

Συνάρτησης φόρου

\[
\log T = \log 2,45 + 1,71 \log Y \\
(0,89) \quad (0,002)
\]

\[
R^2 = 0,9803
\]

Συνάρτησης εισαγωγών

\[
M = -10959,1 + 0,3378 Y^d + 0,358 R_{t-1} \\
(2700,5) \quad (0,0467) \quad (0,143)
\]

\[
R^2 = 0,9418
\]

\[
D.W. = 1,499
\]

Συνάρτησης επενδύσεως

\[
I = -7753,99 + 0,2563 Y^d_{t-1} - 153,46 r \\
(4809,8) \quad (0,031690) \quad (89,345)
\]

\[
R^2 = 0,9640
\]

\[
D.W. = 1,7234
\]
Συνάρτησις επιτοκίου

\[r = 14,1099 - 0,000022 Y - 0,000212 S \]
\[(1,241) \quad (0,000013) \quad (0,000031) \]
\[\bar{R}^2 = 0,7991 \]
D.W. = 0,8089

"Υπολογισθείσαι εξισώσεις διά τῆς μεθόδου τῶν εἰς δύο στάδια ἐλαχίστων τετραγώνων

Συνάρτησις καταναλώσεως

\[C = 1404,06 + 0,8414 Y_d + 0,0579 C_{t-1} \]
\[(1255,2) \quad (0,2065) \quad (0,023) \]
\[\bar{R}^2 = 0,9977 \]
D.W. = 2,7349

"Ενδείξεις διασυνχετίσεως (r) μεταξύ \(Y_d \) καὶ \(C_{t-1} = 0,996 \)
Κρίσιμος τιμή \(r = 0,75 \)

Συνάρτησις εισαγωγών

\[M = - 10961,46 + 0,3384 Y_d + 0,3535 R_{t-1} \]
\[(2700,65) \quad (0,047) \quad (0,1429) \]
\[\bar{R}^2 = 0,9418 \]
D.W. = 1,50

"Ενδείξεις διασυνχετίσεως μεταξύ \(Y_d \) καὶ \(R_{t-1} = 0,851 \)
Κρίσιμος τιμή \(r = 0,75 \)

Συνάρτησις επιτοκίου

\[r = 14,762 - 0,000032 Y - 0,00028 S \]
\[(1,57) \quad (- 0,000017) \quad (- 0,000034) \]
\[\bar{R}^2 = 0,7708 \quad 8,85 \quad 2,5\% \]
D.W. = 0,8088 \quad 1,75

"Ενδείξεις διασυνχετίσεως μεταξύ \(Y \) καὶ \(S = 0,119, \)
Κρίσιμος τιμή \(r = 0,75 \)
Συνάρτησις φόρου

\[\Lambda \gamma T = \Lambda \gamma 2,12 + 1,69 \Lambda \gamma Y \]

\[(0,67) \quad (0,002) \]

\[R^2 = 0,9803 \]

Συνάρτησις επενδύσεων

\[I = - 7753,99 + 0,2663 Y_{t-1}^d - 151,12 \gamma \]

\[(4714,10) \quad (0,0306) \quad (96,19) \]

\[R^2 = 0,9739 \quad 0,82 \]

\[D.W. = 1,71112 \quad 0,75 \quad 2,5\% \]

'Ενδείξεις διασύνεσης μεταξύ \(Y_{t-1}^d \) και \(\gamma = 0,876 \)

Κρίσιμος τιμή = 0,75

Δια να ίδωμεν εὰν καὶ κατὰ πόσον αἱ ἐκτιμήσεις μας εἶναι ἱκανοποιητικὲς ἀρκεῖ νὰ ἐξετάσωμεν τὴν συνέπειαν τῶν ἐκτιμήσεων ἐν σχέσει πρὸς παραδεδεγμένην θεωρίαν. 'Επίσης αἱ ἐκτιμήσεις μας πρέπει νὰ ἱκανοποιοῦν ὁρισμένα στατιστικὰ κριτήρια. Π.χ. δὲν εἶναι ἀρκετὸν νὰ λάβωμεν τὰ ὀρθὰ πρόστιμα τῶν συντελεστῶν παλινδρομῆσως, ὅλα αἱ προκαθορισμέναι μεταβληταὶ πρέπει νὰ ἔρθημεν ἐνὰ ἀρκετὰ μεγάλον μέρος τῶν ἐξηρτημένων μεταβλητῶν διὰ νὰ καταστήσουμε τὸ ὑπόδειγμα χρήσιμον διὰ προβλέψεις.

Οὕτω χρησιμοποιοῦμεν τὸν συντελεστὴ τοῦ πολλαπλοῦ προσδιορισμοῦ, \(R^2 \), τὰ τυχικὰ σφάλματα ἐκτιμήσεως τῶν συντελεστῶν καὶ τὸ κριτήριον τῶν Durbin – Watson, D.W. 'Ἡ στατιστικὴ σημαντικότητα τῶν ἐκτιμήσεων παραμέτρου δίδεται ἐκ τοῦ μεγέθους τῶν τυπικῶν σφαλμάτων τῆς.

'Αλλὰ ἄσ ίδωμεν τὰς υποθέσεις τοῦ γενικοῦ γραμμικοῦ ὑποδείγματος.

'Ἡ πρώτῃ υπόθεσις μᾶς λέγει ὅτι \(E (u) = 0 \) καὶ \(\text{δτί } E (u_i u_j) = 6 \mu^2 \) διὰ \(i = j \).

Παραβίασις τῆς υποθέσεως ταύτης, δηλαδὴ \(E (u_i u_j) \neq 6 \mu^2 \), μᾶς δίδει ἄνομοιογενεῖς διακυμάνσεις, ἤτοι τὸ φαινόμενον τῆς ἐτεροσκεδαστικότητας ή ὅποια καθιστά δύσκολον τὸν ἔλεγχον σημαντικότητας τοῦτον. 'Ἡ μὴ ύπαρξις τῆς υποθέσεως \(E (u_i u_j) = 0 \) διὰ \(i \neq j \), ἢ ὅποια σημαίνει ὅτι ἔχουμε αὕτο- συσχέτισιν τῶν καταλοίπων, μᾶς δίδει πάλι μὴ ἀποτελεσματικὸς ἐκτιμήσεις.

'Εν ἄλλων πρόβλημα ἐπίσης εἶναι ἢ διασυνχέτισις μεταξύ τῶν ἐρμηνευτικῶν μεταβλητῶν. 'Εὰν εἰς ολανδήποτε ἔξισωσιν αἱ ἐρμηνευτικαὶ μεταβληταὶ διασυ- σχετίζονται εἰς μεγάλον βαθμόν, τότε ἵσως εἶναι ἀδύνατον νὰ διαχωρίσωμεν τὴν συνεισφοράν ἐκάστης ἀνεξαρτήτου μεταβλητῆς ἐς τὴν ἐρμηνείαν τῶν ἐξηρτημένων μεταβλητῶν. Οὕτως, ἢ ἀποτελεσματικότητα τῶν ἐκτιμηθέντων τὰ ἄρθρα ἀπὸ τὸ \(R^2 \), τὸ μέγεθος τῶν δειγματοληπτικῶν διακυμάνσεως, ἢ τοῦ κριτηρίου Durbin – Watson καὶ ἢ τῆς ύπαρξεως ἢ μὴ πολλαπλῆς διασυ- σχετίσεως μεταξύ τῶν ἐρμηνευτικῶν μεταβλητῶν.
'Εξέτασις τῶν ὑπολογισθεισῶν ἔξισώσεων

Τὰ ἀποτελέσματα εἶναι ἰκανοποιητικά. Βεβαίως ύπάρχει υψηλή διασυ-
σχέτιση μεταξὺ τοῦ διαθέσιμου εἰσοδήματος καὶ τῆς καταναλώσεως μὲ ύστε-
ρησιν. Τοῦτο εἶναι φυσικὸν διότι ἔχουμε υψηλὴν διακύμανσιν δειγματοληψίας.
Ἡ ὀριακὴ ροπὴ πρὸς κατανάλωσιν εἶναι ἀρκετὰ υψηλὴ καὶ διὰ τὰς δύο
μεθόδους, ἀλλὰ αὐτὸ εἶναι λογικὸν διότι ἢ Ἑλλάς εἶναι μικρὰ χώρα. Ἐπίσης
δὲν ύπάρχει ένδειξις αὐτοσυσχέτισεως εἰς τὰ κατάλοιπα.

Τὰ ἀποτελέσματα τῆς συναρτήσεως τῶν εἰσαγωγῶν εἶναι ἐπίσης ἀρκετὰ ἰκανοποιητικά. Ἔξισος τῶν ἐπενδύσεων εἶναι ἐπίσης ἰκανοποιητικὴ μὲ τὴν
διαφορὰν ὅτι δὲν δυνάμεθα νὰ ἔξαγαμον συμπεράσματα ὡς πρὸς τὴν αὐτοσυ-
σχέτισιν τῶν καταλοίπων. Εἰς τὴν ἔξισον τοῦ ἑπιτοκίου τὰ ἀποτελέσματα
e

Χρησιμοποιούμενης τοὺς ἐκτιμηθέντας συντελεστὰς εὐρύσκομεν τὰς ἔλαστι-
kότητας τῶν ἐνδογενῶν μεταβλητῶν ὡς πρὸς τὰς καθωρισμένας μεταβλητάς.
Ἐπίσης, λόγῳ τῆς ύπάρχεις τῆς μεταβλητῆς καταναλώσεως μὲ ύστερησιν
ἐνὸς ἐτῶν εἰς τὴν συναρτήσιν τῆς καταναλώσεως ἢ μακροχρόνιος ὀριακὴ ροπὴ
πρὸς κατανάλωσιν ἔχει ἔξαχθη.

'Ἡ ὀριακὴ ροπὴ πρὸς κατανάλωσιν δίδεται ἐκ τοῦ τύπου:

\[
\frac{\partial c}{\partial y^d} = \frac{\partial c}{\partial y^d} \cdot \frac{1}{1 - \frac{dc}{dc - 1}}
\]

'Ἡ T.S.L.S. μακροχρόνιος ὀριακὴ ροπὴ πρὸς κατανάλωσιν εἶναι 0,89.
'Ἡ βραχυχρόνιος ἐλαστικότητας τῆς συναρτήσεως καταναλώσεως ὡς πρὸς
τὸ διαθέσιμον εἰσόδημα δίδεται ἐκ τοῦ τύπου:

\[
\frac{\partial c}{\partial y^d} \cdot \frac{\Sigma y^d}{\Sigma c} = 0,925
\]

ἡ δὲ μακροχρόνιος \[
\frac{dc}{dy^d} \cdot \frac{\Sigma y^d}{\Sigma c} = 0,9798
\]

'Ελαστικότητας διὰ τὰς ἄλλας συναρτήσεις:

\[
\frac{\partial I}{\partial y^d} \cdot \frac{\Sigma y^d}{\Sigma I} = 1,662, \frac{\partial I}{\partial r} \cdot \frac{\Sigma r}{\Sigma I} = -0,00765, \frac{\partial M}{\partial y^d} \cdot \frac{\Sigma y^d}{\Sigma M} = 1,36 \]

\[
\frac{\partial M}{\partial R_{t-1}} \cdot \frac{\Sigma R_{t-1}}{\Sigma M} = 0,098
\]
Υπολογισμός των πολλαπλασιαστών

Θεωρούμεν έν υπόδειγμα \(G \) εξισώσεων ελς το όποιον \(G_v \) είναι ενδογενεις μεταβλητα αι όποια θα προσδιορισθούν εκ του υποδείγματος \((Y_{1t}, Y_{2t}, Y_{3t}) \).

\(K \) εξισώσεως μεταβλητα \(Z_{1t}, Z_{2t}, Z_{3t}, \ldots, Z_{kt} \), και μία σειρά σφαλμάτων \(u_{1t}, \ldots, u_{gt} \):

\[
Y_{1t} + b_{12} Y_{2t} + \cdots + b_{1g} Y_{gt} + C_{11} Z_{1t} C_{12} Z_{2t} + \cdots + C_{1k} Z_{kt} + C_{10} = u_{1t} \\
\vdots \\
Y_{1t} + b_{g2} Y_{2t} + \cdots + b_{gg} Y_{gt} + C_{g1} Z_{1t} C_{g2} Z_{2t} + \cdots + C_{gk} Z_{kt} + C_{g0} = u_{gt} \\
\]

\[
\begin{bmatrix}
1 & b_{12} & \cdots & b_{1g} & Y_{1t} \\
1 & b_{22} & \cdots & b_{2g} & Y_{2t} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & b_{g2} & \cdots & b_{gg} & Y_{gt}
\end{bmatrix}
\begin{bmatrix}
C_{11} & \cdots & C_{10} \\
C_{21} & \cdots & C_{20} \\
\vdots & \vdots & \vdots \\
C_{g1} & \cdots & C_{g0}
\end{bmatrix}
\begin{bmatrix}
Z_{1t} \\
Z_{2t} \\
\vdots \\
Z_{kt}
\end{bmatrix}
= \begin{bmatrix}
U_{1t} \\
U_{2t} \\
\vdots \\
U_{gt}
\end{bmatrix}
\]

\(\eta BY + \Gamma Z = U \) (διαφραγματική μορφή).

'Υποθέτοντας ότι \(B^{-1} \) δύναται να εύρεθη έχομεν \(y = -B^{-1} \Gamma Z + B^{-1} U \) ή \(Y = \Pi Z + V \) (άνηγμενη μορφή reduced form).

\(\Pi B = -\Gamma \) δεικνύει την σχέσιν μεταξύ των διαφραγματικών παραμέτρων και των παραμέτρων τής άνηγμενης μορφής. Εξ αυτής τής σχέσεως έχομεν \(\Pi = -B^{-1} \Gamma \), την μήτρα τῶν συντελεστῶν τῆς άνηγμενῆς μορφῆς. Είναι μία μήτρα τής τάξεως \(mk \) και δύναται να υπολογισθή υπό την προϋπόθεση ότι \(B^{-1} \) υπάρχει. Δυνάμεθα να ιδομεν ότι έκαστος συντελεστής τής μήτρας \(\Pi \) είναι μία συνάρτησης δλαν των συντελεστών τῆς μήτρας \(B \).

Τοιούτοτρόπως οι συντελεσταί τῆς άνηγμενῆς μορφῆς έρμηνεύονται ως έκφραζοντες τήν άμεσου και έμμεσου μεταβολήν μίας ενδογενούς μεταβλητής (έξ ατίας) μίας μοναδιαίας μεταβολής τῆς προκαθορισμένης μεταβλητής. Ανεξαρτητικά να έκφρασωμεν τούτο μαθηματικός ως εξής:

\(\lambda \)αμβάνουμε μία \(\epsilon \)ισώσεων εκ τού συστήματος τῶν \(\epsilon \)ισώσεων \(\mu \)ας

\[y_1 = \Pi_{11} Z_1 + \Pi_{12} Z_2 + \cdots + \Pi_{1k} Z_k \]

\(\lambda \)αμβάνουμας τὸ συνολικὸν διαφορικὸν \(\epsilon \)ισώσεων: \(dy_1 = \Pi_{11} dZ_1 + \Pi_{12} dZ_2 + \cdots + \Pi_{1k} dZ_k \)

\[\frac{dy_1}{dZ_1} = \Pi_{11}, \frac{dy_1}{dZ_2} = \Pi_{12}, \frac{dy_1}{dZ_j} = \Pi_{ij} \]
Αὐταί εἶναι αἱ μερικαὶ παράγωγοι ἐν σχέσει πρὸς διὰ τὰς προκαθωρισμένας μεταβλητάς τοῦ υποδείγματος. Καθὼς ἔστησαμεν ἐκφράζωμα τὸ συνολικὸν ὀρισκὸν ἀποτέλεσμα ἑτὶ μῖας ἐνδογενοῦς μεταβλητῆς ἣς αἰτίας μῖας μοναδιαίας μεταβολῆς ἢς μίαν προκαθωρισμένην μεταβλητῆς, λαμβανομένου ὑπ’ ὁψιν, ὦτι αἱ ἄλλαι προκαθωρισμέναι μεταβληταὶ παραμένου σταθεραί. Αὐτοὶ οἱ πολλαπλασιασταὶ καλοῦνται στατικοὶ πολλαπλασιασταὶ (impact multipliers).

Δυναμικοὶ πολλαπλασιασταί

Μέχρι τούτου ἔχομεν ἐξερευνήσει τὰς στατικὰς ἀντιδράσεις τῶν ἐνδογενῶν μεταβλητῶν ἢς χρόνον τ ἢς αἰτίας τῶν μεταβολῶν ἢς τῶν προκαθωρισμένων μεταβλητῶν. Αὐτοὶ αἱ ἀντιδράσεις μετροῦνται μὲ τοὺς πολλαπλασιαστὰς, δηλαδή, οἱ συγκριτικοὶ στατικοὶ πολλαπλασιασταὶ οἱ ἀναφερόμενοι εἰς τὰς μεταβολὰς τοῦ ἐλεύθερου οὐκ αἰτίας μίας αὐτονομοῦ μεταβολῆς τῆς ἐπενδύσεως. Ἀλλ’ ἐδῶ ἀναφερόμεθα εἰς περιπτώσεις ὦτοι δὲν ὑπάρχου μεταβληταὶ μὲ χρονικὴν ύστερησιν. Ὑποχρεοῦμαι ὑπαγορεύει μὲ χρονικὴν ύστερησιν εἰς ἐν ὑπόθεσιμα, ἢ διαδικασία πολλαπλασιασμοῦ τοῦ εἰσοδήματος χρεάζεται ἄρκετον χρόνου. Εἰς τὴν πρώτην περίοδον τὸ ἐλεύθερον ἡ μεταβάλλλεται λόγῳ μεταβολῆς τῆς ἐπενδύσεως. Ἀλλὰ εἰς τὴν δεύτερην περίοδον τὸ ἐλεύθερον έξακολουθεῖ νὰ μεταβάλλεται εἰς αἰτίας τῆς ἀρχικῆς μεταβολῆς τοῦ εἰσοδήματος. Αὐτὸ δὲ ὦτε ἐξαντλεῖ αἱ τὴν ὑπάρξει τῶν μεταβλητῶν μὲ ύστερησιν εἰς τὸ σύστημα, οἱ ὀποῖοι καθοδηγοῦν τὴν ἑπιφάνειαν τοῦ πολλαπλασιαστικοῦ ἀποτελέσματος ἢπτὶ τοῦ εἰσοδήματος λόγῳ τῶν μεταβολῶν τῆς αὐτονομοῦ ἐπενδύσεως. Ἀλλὰ ἀς εἴδομεν τὸν τρόπον ὑπολογισμοῦ τῶν δυναμικῶν πολλαπλασιαστῶν.

Λαμβάνομεν τὴν ἀναγεννητὴν μορφὴν τοῦ υποδείγματος

\[y_t = \Pi Z_t \]

καὶ χωρίζομεν τὰς προκαθωρισμένες μεταβλητάς εἰς διόδου διανύσματα. Ἐν εξωγενέσι καὶ ἐν ἐνδογενέσι μὲ ύστερησιν. \(V_t = τὸ έξωγενὲς καὶ \(Y_{t-1} \) τὸ ἐνδογενὲς μὲ ύστερησιν διάνυσμα. Οἱ συντελεσταὶ εἶναι διαχωρισμένοι.

Τότε ἔχομεν

\[y_t = \begin{bmatrix} \Pi_1 \\ \Pi_2 \end{bmatrix} \cdot \begin{bmatrix} V_t \\ Y_{t-1} \end{bmatrix} \]

\[\hat{y}_t = \Pi_1 V_t + \Pi_2 y_{t-1} \]

Ἐὰν καθορισθῇ ἐν σύνολον ἁξίων διὰ τὰς μεταβλητάς \(y_t \) διὰ ἐν ὀρισμένον \(\tau - 1 \) καὶ \(\hat{y}_t \) ἐν σύνολον ἁξίων διὰ τὰς μεταβλητάς \(Z_t \) ἐπίσης καθορισθῇ, διὰ τὰ \(\hat{y}_t = 0, 1, 2, 3 \), τότε ἡ χρονικὴ εξέλιξις τῶν ἐνδο-
γεννών μεταβλητών δύναται να έλεγχθη διά τα έτη \(t = 0, 1, 2, 3 \) κατόπιν επιαναληπτικής χρήσεως.

Π.χ. είς το υπόδειγμα τής 'Ελληνικής οικονομίας εξ ατίας τών μεταβλητών με ύστερης \(C_{t-1} \) και \(Y^d_{t-1} \) οι δυναμικοί πολλαπλασιασταί δύνανται να υπολογισθούν π.χ. είς έτος 0, αυξάνομεν την κυβερνητική δαπάνη κατά μίαν μονάδα, τότε άμεσως οι στατικοί (impact) πολλαπλασιασταί έν σχέσει με τήν κυβερνητική δαπάνη δι' ολός τάς ενδογενείς μεταβλητάς δύνανται εύκολως να υπολογισθούν. 'Από αυτούς άποκτώμεν τάς έπελθουσάς μεταβολάς είς χρόνου μηδέν είς τάς μεταβλητάς τής καταναλώσεως καί τού διαθεσίμου είσο-

Στατικοί πολλαπλασιασταί έκτιμηθέντες διά τής μεθόδου τών ελαχίστων τετραγώνων. Συντελεσταί τής άνηγμένης μορφής (reduced form).

<table>
<thead>
<tr>
<th></th>
<th>(C_{t-1})</th>
<th>(Y^d_{t-1})</th>
<th>(R_{t-1})</th>
<th>(S)</th>
<th>(G)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>0,448</td>
<td>0,327</td>
<td>-0,43</td>
<td>0,054</td>
<td>1,23</td>
<td>1,23</td>
</tr>
<tr>
<td>(I)</td>
<td>0,0017</td>
<td>0,268</td>
<td>-0,0036</td>
<td>-0,0306</td>
<td>0,008</td>
<td>0,009</td>
</tr>
<tr>
<td>(T)</td>
<td>0,05667</td>
<td>0,07289</td>
<td>0,0980</td>
<td>0,0085</td>
<td>0,28</td>
<td>0,28</td>
</tr>
<tr>
<td>(M)</td>
<td>0,10987</td>
<td>0,09989</td>
<td>0,8058</td>
<td>0,0871</td>
<td>0,38</td>
<td>0,40</td>
</tr>
<tr>
<td>(r)</td>
<td>0,00342</td>
<td>0,00011</td>
<td>0,00206</td>
<td>-0,0019</td>
<td>-0,0005</td>
<td>-0,0004</td>
</tr>
<tr>
<td>(Y^d)</td>
<td>0,2988</td>
<td>0,45247</td>
<td>-0,5216</td>
<td>0,026</td>
<td>1,49</td>
<td>1,49</td>
</tr>
<tr>
<td>(Y)</td>
<td>0,35086</td>
<td>0,4524</td>
<td>-0,61118</td>
<td>0,113</td>
<td>1,74</td>
<td>1,74</td>
</tr>
</tbody>
</table>

Στατικοί πολλαπλασιασταί έκτιμηθέντες διά τής μεθόδου τών είς δύο στάδια ελαχίστων τετραγώνων.

Συντελεσταί τής άνηγμένης μορφής (reduced form)

<table>
<thead>
<tr>
<th></th>
<th>(C_{t-1})</th>
<th>(Y^d_{t-1})</th>
<th>(R_{t-1})</th>
<th>(S)</th>
<th>(G)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>0,1398</td>
<td>0,3354</td>
<td>-0,4333</td>
<td>0,1055</td>
<td>1,239</td>
<td>1,239</td>
</tr>
<tr>
<td>(I)</td>
<td>0,0017</td>
<td>0,2666</td>
<td>-0,0038</td>
<td>-0,0761</td>
<td>0,008</td>
<td>0,008</td>
</tr>
<tr>
<td>(T)</td>
<td>0,0162</td>
<td>0,0747</td>
<td>-0,0987</td>
<td>0,0857</td>
<td>0,28</td>
<td>0,289</td>
</tr>
<tr>
<td>(M)</td>
<td>0,0297</td>
<td>0,1398</td>
<td>0,1758</td>
<td>0,0158</td>
<td>0,48</td>
<td>0,48</td>
</tr>
<tr>
<td>(r)</td>
<td>0,00034</td>
<td>0,00016</td>
<td>-0,00200</td>
<td>-0,00134</td>
<td>-0,0059</td>
<td>-0,0059</td>
</tr>
<tr>
<td>(Y^d)</td>
<td>0,07842</td>
<td>0,3874</td>
<td>-0,5538</td>
<td>0,045</td>
<td>1,4734</td>
<td>1,4784</td>
</tr>
<tr>
<td>(Y)</td>
<td>0,09967</td>
<td>0,4550</td>
<td>-0,6125</td>
<td>0,0536</td>
<td>1,742</td>
<td>1,7423</td>
</tr>
</tbody>
</table>
δήματος. Δια νά εύρωμεν τούς δυναμικούς πολλαπλασιαστάς τῆς ἐπομένης περιόδου διὰ τὴν μεταβλητὴν τῆς κυβερνητικῆς δαπάνης πολλαπλασιάζομεν τὸς μεταβολάς τῆς καταναλώσεως καὶ τοῦ διαθέσιμου εἰσοδήματος (αἱ ὁποῖαι κατὰ τὴν πρώτην περιόδου εἶναι ἵσιν μὲ τάς ἀξίας τῶν μεταβλητῶν τοῦ διαθέσιμου εἰσοδήματος καὶ τῆς καταναλώσεως μὲ ύστερησιν) καὶ πολλαπλασιάζομεν αὐτῶς μὲ τοὺς συντελεστὰς τῆς μήτρας Π, οἱ ὁποῖοι εἶναι οἱ στατικοὶ πολλαπλασιασταὶ ἐν σχέσι μὲ τὴν μὲ ύστερησιν κατανάλωσιν καὶ μὲ τὸ μὲ ύστερησιν διαθέσιμον ἐθνικὸν εἰσοδήμα. Τοιούτωτοπός οἱ δυναμικοὶ πολλαπλασιασταὶ διὰ τὴν πρώτην περιόδου ἔχουν ἥσαχθῇ. Μὲ τὴν ἱδίαν διαδικασίαν οἱ δυναμικοὶ πολλαπλασιασταὶ διὰ πολλὰς περιόδους καὶ δὶς ὀλὰς τὰς προκαθώρισμένας μεταβλητάς τοῦ ύποδηλοματός δύνανται νὰ ἥσαχθοῦν.

Δυναμικοὶ πολλαπλασιασταὶ ύπολογισθέντες ἐκ τῶν εἰς δῦο στάδια ἐλαχίστων τετραγώνων ἐκτιμήσεων

Ἀδεξίας τῆς Κυβερνητικῆς δαπάνης εἰς χρόνον μηδὲν.

\[d \ G = 1 \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1,23</td>
<td>0,64</td>
<td>0,39</td>
<td>0,240</td>
<td>0,1449</td>
<td>0,087</td>
</tr>
<tr>
<td>I</td>
<td>0,008</td>
<td>0,40</td>
<td>0,26</td>
<td>0,157</td>
<td>0,0397</td>
<td>0,057</td>
</tr>
<tr>
<td>T</td>
<td>0,282</td>
<td>0,1286</td>
<td>0,088</td>
<td>0,0482</td>
<td>0,2943</td>
<td>0,017</td>
</tr>
<tr>
<td>M</td>
<td>0,3814</td>
<td>0,1755</td>
<td>0,1161</td>
<td>0,0665</td>
<td>0,0400</td>
<td>0,0253</td>
</tr>
<tr>
<td>r</td>
<td>−0,00059</td>
<td>0,00066</td>
<td>0,0023</td>
<td>0,00022</td>
<td>0,00012</td>
<td>0,00008</td>
</tr>
<tr>
<td>Yd</td>
<td>1,492</td>
<td>0,9653</td>
<td>0,5778</td>
<td>0,3528</td>
<td>0,21234</td>
<td>0,12768</td>
</tr>
<tr>
<td>Y</td>
<td>1,743</td>
<td>1,1033</td>
<td>0,6590</td>
<td>0,4023</td>
<td>0,24225</td>
<td>0,10000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0,0541</td>
<td>0,0308</td>
<td>0,08</td>
<td>0,0111</td>
<td>0,00662</td>
</tr>
<tr>
<td>I</td>
<td>0,0325</td>
<td>0,00634</td>
<td>0,0012</td>
<td>0,0007</td>
<td>0,000421</td>
</tr>
<tr>
<td>T</td>
<td>0,01018</td>
<td>0,0062</td>
<td>0,0314</td>
<td>0,0022</td>
<td>0,001289</td>
</tr>
<tr>
<td>M</td>
<td>0,01207</td>
<td>0,00856</td>
<td>0,0051</td>
<td>0,0030</td>
<td>0,001684</td>
</tr>
<tr>
<td>r</td>
<td>0,00004</td>
<td>0,000028</td>
<td>0,00001</td>
<td>0,00009</td>
<td>0,0000054</td>
</tr>
<tr>
<td>Yd</td>
<td>0,07451</td>
<td>0,04507</td>
<td>0,0269</td>
<td>0,01614</td>
<td>0,0093134</td>
</tr>
<tr>
<td>Y</td>
<td>0,0857</td>
<td>0,05124</td>
<td>0,0367</td>
<td>0,01389</td>
<td>0,0106409</td>
</tr>
</tbody>
</table>
Δυναμικοί πολλαπλασιασμοί υπολογισθέντες εκ τῶν εἰς δύο στάδια ελαχίστων τετραγώνων εκτιμήσεων.

Αύξησις τῆς προσφορᾶς χρήματος εἰς χρόνον μηδέν.

\[dS = 1 \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0,0542</td>
<td>0,01538</td>
<td>0,0140</td>
<td>0,00584</td>
<td>0,00319</td>
<td>0,00145</td>
</tr>
<tr>
<td>I</td>
<td>0,0309</td>
<td>0,00742</td>
<td>0,10070</td>
<td>0,00380</td>
<td>0,00216</td>
<td>0,00181</td>
</tr>
<tr>
<td>T</td>
<td>0,00845</td>
<td>0,00276</td>
<td>0,0021</td>
<td>0,00118</td>
<td>0,00066</td>
<td>0,00033</td>
</tr>
<tr>
<td>M</td>
<td>0,0871</td>
<td>0,00380</td>
<td>0,0029</td>
<td>0,00164</td>
<td>0,00066</td>
<td>0,00042</td>
</tr>
<tr>
<td>r</td>
<td>-0,0019</td>
<td>0,000067</td>
<td>0,00006</td>
<td>0,00002</td>
<td>0,000001</td>
<td>0,0000002</td>
</tr>
<tr>
<td>Yd</td>
<td>0,0545</td>
<td>0,03567</td>
<td>0,02890</td>
<td>0,014543</td>
<td>0,0089</td>
<td>0,004127</td>
</tr>
<tr>
<td>Y</td>
<td>0,0536</td>
<td>0,03978</td>
<td>0,03125</td>
<td>0,010004</td>
<td>0,0098</td>
<td>0,006127</td>
</tr>
</tbody>
</table>

'Εξέτασις τῶν υπολογισθέντων πολλαπλασιαστών

Τὰ ἀποτελέσματα τῆς ἱμετέρας μελέτης ἀπεικονίζονται εἰς τοὺς ἀνωτέρω πίνακας, ὥσποτε π.χ. ὁ εὐθείας πολλαπλασιασμὸς τῆς Κυβερνητικῆς δαπάνης 1,742 σημαίνει ότι αὐξανομένη τῆς Κυβερνητικῆς δαπάνης κατά 1 δισεκ. δρχ., τὸ ἐθνικὸν εισόδημα αυξάνεται κατὰ 1,742 ἐκατ. δρχ. Οἱ υπολογισθέντες πολλαπλασιασμοί μᾶς δίδουν ἰκανοποιητικὰ ἀποτελέσματα, τὰ πρόσημα εἶναι τὰ ἀναμενόμενα. Οἱ στατικοὶ (Impact) πολλαπλασιασμοὶ ἔχουν υπολογισθῆ ὑπὸ τῶν ἐκτιμηθέντων, βάσει τῆς μεθόδου τῶν ἐλαχίστων τετραγώνων καὶ βάσει τῆς μεθόδου τῆς εἰς δύο στάδια ἐλαχίστων τετραγώνων. Π.χ. ὁ πολλαπλασιασμὸς τῆς καταναλώσεως μὲ ύστερησιν ἐπὶ τῆς καταναλώσεως, μὲ τὴν μέθοδον τῶν ἐλαχίστων τετραγώνων μᾶς δίδει 0,448, ἐνώ ὁ αὐτὸς πολλαπλασιασμὸς ὁ ἐξαρχικὸς βάσει τῶν ἐκτιμήσεων τῆς μεθόδου τῶν εἰς δύο στάδια ἐλαχίστων τετραγώνων εἶναι 0,1398. Ἑπίσης ὁ αὐτὸς πολλαπλασιασμὸς ὁ ἐπιδράν ἐπὶ τοῦ εἰσοδήματος διὰ τῆς μεθόδου τῶν ἐλαχίστων τετραγώνων εἶναι 0,3508, διὰ δὲ τῆς μεθόδου τῆς εἰς δύο στάδια ἐλαχίστων τετραγώνων εἶναι μόνον 0,09967. Γενικῶς εἰς αὐτὸ τὸ ὑπόδειγμα οἱ πολλαπλασιασμοὶ τῶν μὲ ύστερησιν μεταβλητῶν ἔχουν μεγαλύτερον ἐπίδρασιν ἐπὶ τῶν ηὐδογενῶν μεταβλητῶν ἀπ’ ὅ, τι οἱ πολλαπλασιασμοὶ τῶν ἄλλων ἦξωγενῶν μεταβλητῶν βάσει καὶ τῶν δύο μεθόδων.

'Ἡ δημοσιονομικὴ πολιτικὴ εἶναι περισσότερον ἱσχυρὰ ἀπ’ ὅ, τι ἡ νομισματικὴ πολιτικὴ. Ὁ πολλαπλασιασμὸς διὰ τὰς κυβερνητικὰς δαπάνας ἐπὶ τοῦ ἐθνικοῦ εἰσοδήματος εἶναι 1,74, ἐνώ ὁ πολλαπλασιασμὸς τῆς νομισματικῆς πολιτικῆς εἶναι μόνον 0,0536 (βάσει τῆς μεθόδου τῶν εἰς δύο στάδια ἐλαχίστων

...
τετραγώνων) και 0,1134 βάσει τής μεθόδου τών έλαχιστων τετραγώνων. Συγκρίνοντας τόν ελσδηματο – δημοσιονομικόν πολλαπλασιαστήν με παρομοίως πολλαπλασιαστάς άλλων υποδειγμάτων βλέπομεν ὅτι κατά τό μάλλον ἢ ἢττον εἶναι παρόμοιοι. Εἰς τό υπόδειγμα Klein – Goldberger*) ο πολλαπλασιαστής οὕτως εἶναι 1,2294, διὰ τό υπόδειγμα τοῦ Rhomberg** εἶναι 1,5 διὰ τήν περίπτωσιν τῆς μεταβαλλομένης συναλλαγματικῆς ἴσοτιμίας καὶ 1,8 διὰ τήν περίπτωσιν τῆς σταθερᾶς συναλλαγματικῆς ἴσοτιμίας. Διὰ δὲ τό υπόδειγμα τοῦ Παυλοπούλου 1,5***. Οἱ δυναμικοὶ πολλαπλασιασταὶ διὰ τήν κυβερνητικῆς διατάξεως εἶναι πολὺ ἴσχυροι καὶ καθὼς δυνάμεθα νὰ παρατηρήσωμεν εἰς πλείστας ἐκ τῶν ἐνδογενῶν μεταβλητῶν δὲν ἔξαντελθεῖ τὴ ἐπίδρασις πρὸς τῆς ἐνάτης περίοδον. Ἀντιθέτως οἱ πολλαπλασιασταὶ τῆς νομισματικῆς πολιτικῆς δὲν εἶναι τόσον ἴσχυροι καὶ διὰ τὰς περισσοτέρας τῶν ἐνδογενῶν μεταβλητῶν ἡ ἐπίδρασις ἔξαλλελθεῖ μεταξὺ τῆς τρίτης καὶ τῆς τετάρτης περιόδων.

Οἱ ἐξαιρέτωτες πολλαπλασιασταὶ εἶναι ἐξαιρετικῶς χρήσιμοι διὰ τῶν ἀσκούντα τῆν οἰκονομικὴν πολιτικὴν. Ὁ ἄσκον τῆν οἰκονομικὴν πολιτικὴν δύναται νὰ συνθετάζῃ τοὺς πολλαπλασιαστὰς μὲ πολλοὺς τρόπους, ὡστε νὰ ἐπιτυγχάνῃ πολλαπλοὺς στόχους.

*) Impact multipliers and dynamic properties of the Klein – Goldberger model.

**) A model of the Canadian economy under fixed and flexible exchange rates.