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ABSTRACT. This paper gives the exactly equivalent 0 - 1 Knapsack to an
Assignment problem of order n; consequently all the Assignment problems can

be solved rapidly using the equivalent Knapsack and a computer.
\

1. INTRODUCTION

The Assignment problem is the special type of linear programming problem
‘where the resourses are being allocated to the activities on a one-to-one basis [1].
To formulate this problem in mathematical programming terms, define the
activity variables as':

Xjj = 1, if i is performed by j
= 0, otherwise

fori=1,2,...,nand j=1,2,..., n
then the optimization model is :

(1) optimize chij * Xjj
ij

supject to,

€)] 2 x; =1 (all j)

@  x;€{0,1} (alliand j)

where the ¢;; is a cost (or profit) for assignee i to assignment j.
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The 0-1 Knapsack is a pure integer program, the model of which is as
follows,

4) optimize X' ¢, - Y, it = 15258 005 11
t

‘supject to,

(6) Za, -y, =Db

t

@) y, € {0,1} for all t

where c,a, in this paper are all positive integers [2]. :

It is Known that the 0- 1 Knapsack can be solved by the Branch - and -
Bound algorithm easily [ 3 | ; but the Assignment proplem for large n is diffi-
«cult to be solved. Consequently the following question is arising :

«How can the model model (1), (2), (3) and (4) be transformed into
an equivalent Knapsack (5), (6) and (7) and what is the exact values
of ¢,,a,b and T 2.

This paper deals with the above question and gives a complete answer.
2. TRANSFORMING THE ASSIGNMENT PROBLEM INTO AN

EQUIVALENT INTEGER PROGRAM

We write the (2) and (3) as follows :

1 x11+"'+xln=1

n Xol + * =+ 4 Xpn = 1
ntl  xpt o+ X =1

2n Xin + ¢ ¢ - + Xnn = 1
So, we get 2n conditions. We correspond the variables x;; to the variables
Yas A =1,2,..., n% where, ¢
®) A=(@{G—1)n+]

We define the martix M = (mex), 9 = 1,2,...,2n A=12,..., n?
‘SO that :

mex = 1, if ya occurs into condition 9
= 0, otherwise.

Consequently in [3] we got the following :
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Lemma 2.1. We have mg, = 1 iff one of the following cases holds :
@Md=12...,nand A =@ —1)n -+ A, A, =1,2,...,n
(i) §=n+4+u,u=1,2,...,nand A = Amn+u, A3 =0,1,2,...,n—I-

We see, that on the one hand the matrix M does not depend on the forme
of the conditions (2) and (3), and on the other hand the construction of M is
possible in the use of computer. So, we get the equivalent integer program,

©) optimize.fi'c)\ o VN =l 9l .,.N
subject to, :
(10) {me;\-yx=l (allﬂ:l,Z,...,M)
(11 yr € {0,1} for all &
where N = n? and ¢y = ¢jj, A= (i —1) n 4 j.
Corrolary 2.2. Forevery " =1,2,. .., 2n we get:

DTN g AT s A =] 50 S T 2
A

3. CONVERTING THE (9), (10), (I11) PROGRAM

Consider the integer programming model (9), (10) and (11). Such a model
can be transformed into an equivalent problem where the M constraints in (10) are
1eplaced by a single constraint. For easy of exposition we illustrate how to
aggregate two constraints [4] : -

T
(12) 2 S -x,=Db; and X R, . x, = by

tem] te=1
where x, € {0,1,2, ..., U, } and all S;,R,,b,,b; are integer - valued. Let,
m = X (max{0,S,}) - U, —b,
t
my = X (min {0,S,}) . U, — b,
t

m = max {m,, |mg|}.
Then we can replace (12) by :
a3 XS +M-R):x,=b+M.b,=B
t 5

where M is any in.tegcr such that {M'l > m.
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Assume the two first constraints of (10) :

my; - Y5 = 1.

Itz

N
(14) X my - y; =1 and
j=1
Then, because of (13) and 2.2 we get,
N
m X (max{0,mp}) . Uj—1=n—1
je=1
m=0—1=—1
m =n—1 ; sooM=n
N
Z (mg+mj-n).y;=1-+mn-1=By, (§=2).
J=1
We set B; = 1 and L; = m;;. Thus we have a new constraint instead
of (14) ; let :
N
15) 5 LJ? . y; = Bs
=1

We write the 9 = 3 constraint of (10) and (15) :

N N
(16) 2 ms; - Y = 1 and X sz e Y5 = B;,.

j=1 =1
Then, because of (13) and 2.2 we get M = n again, and

N
(17) Z(m3,-+LJ?-n)-y,-=l+n-B,=B3
j=1

If we continue the above technmique, at the end (% = M) we get the final

single constraint :

N
X (mMj + L:i“—l. n) y; = 1 +n . BM—1:BM
j=1

Lemma 3.1. The constraints (10) are equivalent to the single const-

raint (9§ = M) : .
g‘(me,-+ L?"' .n) -y;=1-+n-Be_; =Be
=1

where § =2,3,. .., M, B;= I,L}—_—m,j, Vi = 1,.2,. . ., N and,

N
Z Ly -y = Be

E 62
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Theorem 3.2. The Assignment problem (1), (2), (3) and (4)is
equivalent to the following 0—1 Knapsack problem :

n?

(18) optimize i AW, A=@(—Dn+j i,j=12,...,n
1
subject to :

19 I I (@ 4 10D . Yynpp = 5 00

n=1 p=1 =0
(20) YAME{E0, 1113 8 S =R O S e s,
Proof. From 3.1 we get,

By=1+n.By1=1+4+n+n%. By, =... = 14n+nd + .. 4nM-! .B, =

2n—1
=n4n+4n2++...n01.1=% p¢
¢=0

So, we get the right - hand side of (19). Assume that dg, 8 =1,2,.. .,2n
are the respectively coefficients of y;o in 3.1; then there exist w and W, such that,
wFhEwo €E{1,2,...,20} and myj, = my,;, = 1, mg;, = 0, v & % w, wo

Consequently we have :
dy =my,+Lj, -n=0+4+0.n=0

G AL ]
‘dw+]=0+1-n=n

dat==an ey

dn+1 = pnn—w+l1

dw, =1 4 no—wtwo—n — | 4 pwo—w =] 4 qn

dZn = nn—wo + nn—wo+n — n2n—wy + n3n—wo

We set p = p = wo — n into the left - hand side of (19) :

nZn-—wu+n + ni—wotn — n3ﬂ—Wo + n2n-—wo = dZn-

Therefore the proof of 3.2 is complete.
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4. THE ALGORITHM

We give an algorithm to solve the Assignment problem (1), (2), (3) and
(4) according to 3.2, the steps of which are ordered as follows :

STEP 0. The n and the martix A = (¢;;), ,j= 1,2,...,n

are given.
STEP 1. We define the matrices :
Y=(mn) » C=(aa)=0
Wherel =" (il— 1) fny=r5) s =150 R in
STEP 2. We set :
cn= ¢;; where A = (i— 1) n +3j, vij
STEP 3. We solve the Knapsack :
optimize C « Y
Subject to,
: 2n—1
X (n—i 4 i) o o= Y n®
i j $=0

ywE({O0,1} for all A

STEP 4. If y\, = 1 then the respective variable x;; = 1, where
A= (i—1)n+4j ; otherwise x;; = 0. END.

An available computer was used and the program of the above algorithm
was coded in machine language ; so, in case n = 1500 we got the optimal -
solution after 7 minutes machine time work. But, when we tryed to solve the
problem without the above algorithm, then we got the optimal solution after
12 minutes.

Illustration 4.1. An easy example will clarify the details of the
Procedure. Consider :

maximize (3xu + 4xy3 + Sx33 + 3x34 F Sxa + 4xn + 3xa + 2xu + 6x91+4
Txss + 8xss + X5 + xa + 3%a + 2xe + S5x44)

Subject to,

Zx; =1 (alli) and %’.’xu =1 (allj)
j

Xij = {0, 1} ) VI,J e 112;3)4-
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STEP 0. The n = 4 and the martix :

%
|
L |

[FUIEEN I S
N 00 W
(V. T S V)

are given.

STEP 1. We define the matrices :

YA =R (Cy,0) =8]SRl 6

C=(aa)=0 , A=(—1)-4+],vij=1234
STEP 2. We get:

C = [3,4,5,3,54,3,2,6,7,8,1,1,3,2,5}
STEP 3. We solve the Knapsack :

maximize C - Y
subject to,

16448 y, + 16400 ys + 16388 y; -+ 16385 ys + 4160 y; + 4112 y; + 4100 y; +

4097 ys + 1088 yy + 1040 y;o + 1028 yy; + 1025 yis + 320 yis =F 272 yu +
260 Yis + 257 Yie = 21845.

ya= 0 or 1.
STEP 4. Optimal solution: ys = y; = y;; = Y16 = 1; consequently we get =
X139 = X = Xg3 = Xe = L.

where the maximum value is 22. END.
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