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1. Introduction

The purpose of this paper is to critisize some hypotheses which have
been used in the well known article by A. Zellner, D.S. Huang and L.C. Chau
«Further Analysis of the Short-run Consumption Function with Emphasis on
the Role of Liquid Assets» [8], and to apply an integrated autoregressive
moving average process in these consumption functions using the same data.

2. Zellner’s et. al. Paper : A review

In this paper Zellner et. al. report the results of additional experiments
with the short - run consumption function. In particular they take up the problem
of isolating expectation, inertia, and habit persistence effects and then they
examine the problem of interpreting and estimating a real balance effect. In this
work they estimated nonlinear distributed lag relationships by using nonlinear
techniques. Further they examine the problem of autocorrelation in distributed
lag schemes in a manner suggested by Fuller and Martin [ 4].

Aside from illustrating approaches to these methodological problems which
they yielded results on the role of liquid assets in determining consumption expendi-
tures which, they beliere are of consequence with respect to establishing direct
influence of monetary variables on an expenditure relationship.

As regards expectation, inertia and habit persistence effects they consider
the following range of hypotheses :
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(DS NG = kY eiEau s

@ C. = k (Y + BYTE hipIe S B el RSy
and

(@) C, =% Cpy + ks Y5 + Us.

where C, = quarterly real consumption, Y§ = quarterly real expected dispo-
sable income. The parameter f is introduced to represent possible inertia in
reactions to changes in expected income.

Using Friedman’s equation

@ Yy—Y: =(@1—AN)(Y,— Y,

where Y, is price-deflated seasonally adjusted quanterly personal disposable
income, and A is a coefficient of expectations, equations (1), (2) and (3) become

(1,4) Ct = A Ct-l iz kt (1 '_')") Yg + u —.Kult-l 3

24 C,=0+BCa—MCat+tki(l—=NY, + uy—
o O" + B) uﬁt-l '+' }:B u2t_g

and

(34) C,= A+ ) Cry— A Cps + ks 1 —A) Y, + usy — Augyy .

Using U.S. quarterly data on C, and Y,, 1947 IV — 1961 II from Griliches
et. al. [ 6] they concluded that neither (2,4) nor (3,4) is operative.

Their next step was to consider the role of liquid assets in affecting personal
consumer expenditures. As a firstapproximation they formulate the consumption

function as follows :
G C, =k Y 4 a (L — Ld) + us, ,

where L, represents actual holding of real liquid assets at the beginning of
the quarter, Ld represents the desired level of real liquid assets for the tth

quarter and o is an adgustment coefficient (o > 0). About L{ they assume

initially

e =
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a hypothesis in accord with Friedman’s view of one of the main determinants
of the demand for money. Combining (5) and (6) they obtain

(5,6) C,=(ks—on) Y¢ + oLy + us.
Then by utilizing (4) and Koyck’s transformation they obtained
(4,56) C,= A Cyq + aLi —0AL s + (ks —om) (1—A) Y + uge — A sy

In this equation we observe that we have a problem of «overidentificationy.
In this case we can estimate (4,5,6) subject to a certain constraint in these
parameters.

As an alternative to (4) which may not incorporate trend considerations
adequately, they consider

()R VIR (1) (il Sy S

—1»

where y is the proportionate rate of increase of expected income ; that is, if
Wk = Yoo thenfiYiele—Svie s =S AViel B Onicombininggi?) with (5) and (6)
they obtain

(5.6,7) C,=A+7)Cq + 0Liq — 0(A+7) Lig + (ks — o) (1—2) Y, +
+ upy — (A 4 V) Usey -

Since the interest rate may be a variable influencing desired liquid assets,
they reformulate (6) to real :

@ Li=nYe —3i,.
On compining (4), (5) and (8) they are led to the following results :

458) C. =% Cei + 0 (Lo — ALey) + 08 (i, — M) +
() () et T

To test further the sensitivity of their estimates to specifying assumptions
they combined (5), (7) and (8) to yield :

(5.78) C = (41 Coy 0 [Lioy— O+7) Luss] + 08 [iy— A1) it 1+
+ (ks — om) (1 —A) Y, + U5 — A Uspes

In terms of their equation (4,2,8) they introduced the following hypothesis :

©® Vvi=pv+ &,
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where v, = u; — Aus-; and g, is assumed to be g «classicaly disturbance.
On combining (9) and (4,5,8) they obtain

(4:5:8,9) Ct = (;“—*_p) Ct'l — p;\‘ C"" _}— a (Lt" = Lt"’) —pa (Lt-’—)bLt-l +
+ 08 (i — M) — POS (ii-1 — A=) + (ks—am) (1—2) (Ye—pY,-)+
- €.

From their estimates they found that U.S. quarterly data 1947 1V—1961
Il do not support that inertia or habit persistence effects are operative in
addition to an income expectation effect. They conclude also that the hypothesis
that imbalances in consumer liquid asset holdings exert a statistically and
economically significant influence on consumption. This is important since it
constitutes an evidence that monetary variables affect an important expenditure
relationship directly and not Just indirectly through interest rate effects.

3. Comments on Zellner’s et. al, Paper

) If we consider instead of (3) a pure habit persistence hypothesis, say
(3% Ci = nCp + kY, + uy,

then we will have as a result that (3*) will be indistinguishable from (1,4),
which means that the hypothesis (3*) alone can explain the behavior of consu-
mer expenditures without the need to use together the expectation hypothesis,
and vise versa. ;

B) Zellner et. al. suggested that neither (2,4) nor (3,4) is operative. They
reached to this conclusion by testing the coefficient of Ci-s variable, which
according to the data used is found to be not significantly different from zero.

The effect however of ignoring possible autocorrelation in the disturbances
in equations (2,4) and (3,4) could lead to a biased estimation of the coefficient
of C,.s, which bias could lead to doubt about the rejection of the hypothesis
that this coefficient is statistically insignificant 1.

A
Y) The estimated % in the equation (4,5,8) is about the same as the estima-

A A A
ted (A + p) in the equation (4,5,8,9). This means that p ~ 0, which implies
that the assumption (9) is not the correct one.

8) The assumption (9) that (1 — pL) v, = &, is random implies that

1) As we know, we obtain a bias estimation of the parameters in an equation where
Wwe assume autocorrelation among the disturbances and within the regressors we have the
regressant with some lag period., For this see T. Gamaletsos [ 5] pp. 239 - 247.
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( —pL) 1 —AL)u, = g is random, that is we have a second - order
autoregressive process for u, in equation (5), which is of the fom

usp = (p + A) (Lu) — pA (L2 U + &0

Where L is the lag operator. :
The non-linear two-stage leart squares estimates of A and p are respecti-

A :
vely A ~ 0,8 and ,;\ ~ — 0,3, which gives approximately
us, = 1/s (L u) 4+ Y4 (L) + &, .

€) The non-linear classical least squares estimation and the non-linear
two-stages least squares estimation methods affect the pattern of distributed
lags in the model (4,5,8,9) 2.

ot) The equations (1,4), (2,4) and (3,4) which have been estimated, are
derived by applying hypothesis (4) on the equations (1), (2) and (3) respectively.

The equation (4) — or the equation (7) —is derived by assuming that the
discrete distribution of t (the lag patterns) is of the form w. = (1 —A) Af,
where 0 <C A < 1. However this form of distribution of lags, called «geometric
distributiony», proposed by Koyck, is one among many others and there is no
a priori necessity to use that special distribution. We should first test which
is the appropriate distribution to apply in this case. But before we do this a
brief review of the theory of distributed lag models is needed.

4. The Theory of Distributed Lag Models : A Review

Generally in the equations of the form

(10) Ye = B (Wo X¢ + Wq Xy + Wa X2+ .. .) + u,

or

1 Ye = Bw (L) x, + u,

by using the assumptions w; > 0 and Yoo W« = 1 we can note that w;’s
have the properties of a discrete probability distribution defined over the integets
t=0,1,2, .. .; this leads to the need of discussing the form of the distri-
buted lags t© and finding the moments of these distributions —in the case we
are not interested for the whole distribution. The sequence of w: ’ s describes
the form of the lag, the «time path of an economic reaction.

2) For patterns of distributed lags see Griliches [ 7 ].
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There are some advantages in the use of the notion of probability distribution.
In equation (10) or (11) above we can interpreat w(L) as a polynomial in the
lag operator and as the lag-genereting function 3. This interpretation has the
advantages of a probability generating function from which we can get the
moments of the distribution w. . For example by using the first and second
derivatives of this function at a specific point we derive easily the first and
second moments of that distribution.

Many patterms of distributed lags are possible ; any probability distri-
bution over the nonnegative integers is available. And we need to have a priori
knowledge of the distribution of wr for estimation and for analytical purposes.

Below we will present briefly the most important distributions of Wwx,
which have been used by several researchers in applied economics.

o) Finite Distribution

In this case we have w, = 0 for t > h, where his an integer. The model
(10) in that case, omitting the disturbance, can be written as y, = f w(L) x,
where w(L) = X2 ) W .

f) Log-normal Distribution (proposed by Fisher)

According to this distribution w, is the probability that a normal variable
with mean p and variance o? takes a value between Int and In(t + 1).

y) The Distribution w. = A%*re=* (proposed by Theil and Stern).

8) The Geometric Distribution (proposed by Koyck)

According to this distribution we have we = (I — A) A, where 0 < A < 1.
The model (10) in this case, omitting the disturbance, takes the form

Vo= ﬁ(l"k) (1 —AL)? x,.

The mean of this one-parameter distributionis E(t) = A /(1 — A) and
the variance is v(t) = A [ (1 — )%

g) Pascal or Negative Binomial Distribution (proposed by Solow)

3) If the function A(®@) = a, + a,z + 0,2 + a,2° + ... — where z is a dummy
variable — has a limit, then A(z) is called the generating function of the sequence

{ai } In addition if all >0 and A(l) = 1, ie E?_, ai = 1, then A(z) isa proba-
bility generating function.
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In this distribution we have w, = (1) (=M AT, where 0 <A <1

and r is a positive integer. Assuming this distribution the model (10) takes
the form

Ye = B0 —M (I —AL)™" x¢ + u,.

This two parameter distribution permits wide variety of shapes ; for
r = 1 it becomes a geometric distribution.

ot) Rational Distribution (proposed by Jorgenson)

When the w(L) can be factorised into a ratio of two finite polynomials,
say w(L) = U(L) / V(L), then we have a rational distribution. In this case
the model (10) can be written as V(L) y, = U(L) X, (omitting the disturbance).
We observe that the rational distribution is a more general case than the
negative binomial distribution, which in turn is a more general case than the
geometric distribution.

It is worthwile to notice that Jorgenson’s proposal is very similar with
that of Box and Jenkins *.

Griliches [7] suggests that the difference equation V(L)y, = U(L)x,
has a bounded solution for arbitraty initial conditions if and only if V(L) is
stable, that is if the associated characteristic equation z® T (z!) = 0 has all
its toots inside the unit cycle — which is a similar idea with that of Box
and Jenkins 5. And for the resulting sequence to be an acceptable distributed
lag function (i.e. nonnegative and convergent) it is sufficient for hoth sequences
V(L) and U(L) to be convergent and nonnegative. If U(L) is a constant — as
it happens in the models (2,4), (3,4) and (4,5,8,9) — we then examine only V(L).

A necessary condition for V(L)-! to be convergent and nonnegative is that
the maximal root of the associated characteristic equation V(Z-Y) = 0 be possitive
and les than one. If we want a well behaved «smoothy» lag distribution, it is
sufficient that the roots of V(Z-!) = 0 are real and positive °.

4) Compare the above equation V(L)yt — U(L)X: with ®(B)z, = O(B)a, of Box
and Jenkins [2] p. 11.

5) Box and Jenkins [2] define an autocovariance generating function
CB) =2+ *® v« Bk and this function converges for |B| < 1, and since the auto-

k= — @
covariance generating of a linear process factorizes C(B) = L(B) L(B—1), the above condition
implies that L(B) must converge for |B| | < | 1, that is, within the unit cycle.

6) The constraints on the admissible range of the coefficients of V(L) are sufficient bug
not necessary.
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If the roots of V(Z) = 0 are real, positive and distinct, then V(L)** can
be written as a convolution of a number of geometrically declining lag distri-
butions, the number convoluted being equal to the number of roots of V(Z-1) =0.

In the (general) Pascal distribution the roots of V(Z-1) = 0 will be real
positive and equal. But in a Rational distributed lag function we have not this
constraint of Pascal distribution ; i.e. equality of the roots. However the resulting
difference equation may still imply an acceptable distributed Jag function.

As we mentioned before, when we know the form of the distribution of
W: we can estimate its moments. For examble, when w, — (1 — A) AT then
the mean is E(t) = A [ (1 — A) and the variance is V(@) = A /(1 — \)?;when
w(L) = U(L) / V(L), where U(L) = constant, and V@) = @1 —bL — cLY)
the mean is E(r) = (b + 2¢)/ (1 — b—c). Griliches says that this E(t) may
not be so sensitive to slight changes in b and c. Uncertainty about b and ¢
separately can imply uncertainty about the shape of the lag distribution, but
not necessarily about the average lag E(t).

The average lags of the models (2,4) and (3,4) are respectively

T A B A

EI(T) == == + m and Eg(’C) = 1——[3_ -+ 1—_\}”

while the average lag of the model (4,5,8,9) is

A
D) e

Following Griliches, to have a nonnegative lag distribution in the model
(4.5,8,9) the parameters b and ¢ must satisfy the following restrictions : a)
0<b<K2 B)—1<c<], ¥) (I —b—c >0, and §) b2 > —4c, where
b= (A + p) and ¢ = — Ap. For b® = — 4c we have Pascal distribution, Zellner
et. al. using non-linear classical least squares and non -linear two - stages least

A A A
squares estimation methods have found p. ~ —0,10 , A. ~ 0,33 and pPr ~ —
A A A
0,29 , Ar = 0,82 , where p. and A. are the estimates of p and A using NL—CLS
A

A
method, while pr and Ay are the estimates of p and A using NL — TSLS

estimation method. Therefore using NL — CLS method we optain

A A A A A A
be = (A + pe) =023 and cc = — p, A, = — (0,10) (0,33) = 0,03, while

using NL — TSLS method for the same parameters we obtain the estimates
A A
br =~ 0,82 —0,29 =0,53 and cr = — (0,29) (0,82) = 0,24.

Therefore these estimates of b and ¢ using NL — CLS and NL — TSLS
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estimation methods satisfy the above restrictions, i.e. we have a nonnegative
lag distribution in the model (4,5,8,9).
The average lag accosiated with the NL — CLS estimates is

A A
A 0,2
E () = pj\ AL }”; =i 73 ~ 0,4 quaiters,
1 —p. 1—Ac &

while this average lag accosiated with the NL—TSLS estimates is

A
Amel i u1t0]
WN023

A
A pPT
E() = A + = 4,4 quarters.

A
]—pr I—XT

Therefore we observe that the average lag of the model (4,5,8,9) changes
very much by using NL — CLS and NL — TSLS estimation procedures.

Jorgenson’s Rational distribution is analogous to Box—Jenkins’s proposal
for an ARMA (p,q) —a q — order moning average and p — order autoregres-
sive scheme — which is adequate to describe most stationary time series, for
small p and q.

However the ARMA (p, q) process is a special case of the IARMA
(p, d, q) the integrated ARMA (p, d, q) process, which, for appropriate choice
of the parameters, fits observed non - stationary time series 7.

Now Box and Jenkins ARMA (p, q) model is given by the formula

12 o®)z =0 g,

where ¢ (B) and 0 (B) are polynomials in B of degree p and q respectively. To
ensure stationarity the roots of the characteristic equation ¢ (B) = 0 must lie
inside the unit cycle 8. Therefore a natural way of obtaining non - stationary
processes is to relax this restriction. For non-stationary time series, it appears
that the ARMA (p, q) process will fit the first or second or d-th order

difference of the z series. This is the IARMA (p, d, q) and the model (12)
becomes

7) Note that ARMA (d, q) = IARMA (0, d, q).

8) For example in the model (1 — ¢ B)it = at , which is an ARMA (1, 0), to ensure
stationarity we must have | @| < 1.When |@| > 1 we have non- stationarity.
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(13) o (B) Az, = 0 (B)aq,.

All these models are linear, but this should not bother us since we can
transform some nonlinear models into a linear one by a suitable transformation,
say a logarithmic transformation. The possibility of improvement of model
adequacy by transformation should always be borne in our mind.

Now the question that arises is which of the previous' ‘models’ best
describes a given time series. If we know the pattern of the distributed lags we
can use it for forecasting ; and what we are interested in here is to forecast
and not to estimate the structural parameters of the above described models.

The «permanent», which we better call «expectedy income hypothesis (1)
in Zellner et. al. assumes that a consumer is attempting to forecast his income
on the basis of the past values of the observed income. The measured income
is a time series, a stochastic process, the form of which we are trying to find
out. When we know the stochastic (stationary or nonstationary) process which
generates measured income, say Y., we can find its optimal predictor (forecast),
say Ye¢ °.

Friedman’s optimal predictor (4) or
(14) = 21.1 (1—p)r-!Y . =P Efo.:o (1 ma P RYe e

is an «exponentially» weighted average of past observations10.

Box and Jenkins give a more general form of Friedman’s predictor,
which is of the form :

(@S e

i=1

=— [Zi=l Y-i S-i -+ Ekio Y SE ] e,

9) By an optimal predictor we mean the minimum variance unbiased predictor, which
is given by the conditional expectation E (Yt | Yt—1, Yt—2,...).

10) Equation (14) is obtained from (4) by using the lag operator as follows :

[1—(—PL]Y: =B Y

or Ye =[1— (1 —p) L] BYy

or Yo = [1+4 (=B L + (1 — B o ] BYey
= BYy +B(A—PB) Y + B (1 — B + ...
=B 32, 0 —P)" Yi..
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where S-ie, = Al e, (the j th difference of e,) and e, = Y, — Y¢; thisisan
«adaptive» forecast, because it depends on the past forecast.

The predictor (25) above is optimal for a stochastic process, which is
generated from

(16) A Yt+1 — A8t+1 + AY:—{-]
= Adi11 + [Eii:l_l Sz 1 220 Yk Sk] Gt
= Adip1 + zj_’."._l'YJSjst

where §,’s are non-autocorrelated identically distributed random variables with
E®,) = 0, i.e. they are «random deviatesy.

If the stochastic process (16) is non-stationary we can transform it into
stationary by differencing m times, if the population serial covariances of lag
greater than m 14 1 were zero ; and the predictor (15) would be an optimal

one.
Differencing (16) m times we obtain

(17) Am-H YH’] = Am+l 8t+l + 2111%1 Y AH-m—j 8t

which we rewrite as
(18) Amtl Yipg = 81 + XUED 15 8¢

so that all serial covariances of lag 1 4+ m + 1 and after are zero. Equation
(18) now represents a stationary moning average process of order 1 4+ m + 1.

Note that Friedman’s predictor corresponds simply to the central term
in the general series (15), namely A Y, €1 = Yo® (or AYS = yo 6,.1), which
can be written in a more familiar formula as

(19) YOE = 2,20 (I — 7o) Yy

or for yy = 1 — A we have
(20) Y5 =0 —2 32, M Yy

T VS TaE R e e

which is hypothesis (4) in Zellner et. al.
Therefore the general form (15) of Friedman’s predictor comes by adding
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«past» and «future» terms in the well-known exponential form (20). This equation
(20) is an optimal predictor for the stochastic process

(1) Yiqr = m + 81 + v S8y,

for which the first difference is a first - order moning average process.
In the general form (16) if y; = O for all i %= 0, then this equation becomes

(22) AYH.] = Yo St + A 81+1 5

Thus if (22) is correct then p, = 0 for all T > 2, where p. is the coefficient
of serial correlation of lag t. This provides a convenient check up on model
(22). The optimal predictor for this model, as we mentioned above, is equation (20).

If y; =0 for all i=%~0 and i=+ — 1 equation (16) becomes
(23) AYir = 708, + Ay + v-1 AS,,

which it is correct then p. = 0 for all t > 3. The associated optimal predictor
is given by the form

(24) AY. s, = ¥ Ae, + voe,

which is a special case of (15). If y; = 0 for all i #0, 1, — 1, then (16) becomes
(25) AYe = 708 + B8y + Y2 B8 + v B, 8 .

Now if (25) is correct then p, = 0 for all T > 4. The corresponding
optimal predictor in this case is

(26) AY.S = Yoo + v1 D6+ M E,-m:o et—)-

The second difference of (25) is a moving average process of order 3,
that is

Q7D A1 =8+ W1+ Yo+ Ya— 2) 8, + (1—2Y-1—Yo) 8-y + Y-18¢-2-

Note that the change in the predictor in any period t is a function of
there separate «controls» : Ae,, e, and }"_,j‘:"o et—; ; Box and Jenkins named them
«first difference» term or «derivative control», «proportional» term and «cumula-
tivey term or «integral control» respectively.

The selection of the appropriate model is of course vital. And what we

have to do here is to identify the model, which best describes the given time
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series (which is the same with that used by Zellner et. al., i.e. disposable income
in billions of 1954 dollars, seasonally adjusted at annual rates, 1947 IV—1961 1I,
taken by Griliches et. al.).

5. Model Identification

What we need first of all in this case is to know how many times we
will difference the non-stationary time series to produce stationarity. After that
we have to determine the degree of the polynomials ¢(Bj and 6(B) in equation
(13) above, i.e. how many terms will be included in the IARMA (p, d, q) model
fitting this stationary series.

5.1. Use of the Autocorrelation Function

The test procedure here for specifying the appropriate TARMA (b, d, q)
A

model is to compare the estimated autocorrelation coefficient p. withits stan-
dard error under the assumption that the process is a moving average of order
(t—1). For values of © > q — where q is the degree of the polynomial 0(B) —
A
p: should be small compared with its standard error.

Using Bartlett’s formula

1 S
@) V()= [1 oAl pi]

A
and replacing p. by p. we have

" Lige( o
@ | we) =i om el

Now if the process is of order T, the statistic

A
p

—____A:_

V V(p:)

will approximately be distributed as a unit normal variable. And if a series of
s values beyond some point q lie between the 95 9 limits + 1,96, it can be
concluded that the process is a MA (q).

Table 1 shows the first twelve estimated autocorrelation coefficients of

17

(30) St =
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the first differences of Y, with their estimafed standart deviations and their
Statistic s; . From these estimates we see that all | s¢ | values, with only one
€xception, lie within the 959 limits. It could therefore be correctly concluded
that the process { Y, } is of zero-order, i.e. that the appropriate model is the
¢ (B)z, = 0(B)a,, where ¢(B) is a zero degree polynomial,

5.2. Use of the Partial Autocorrelation Function

Box and Jenkins suggest that if the autocorrelation function and partial
autocorrelation function exhibit opposite behavior we have a pure autoregressive
Or a pure moving average process; but if both autocorrelation functions tail
off we conclude that we have an ARMA (p, q) process.

To estimate the partial autocorrelation coefficients we use the recursive
formulae, which is due to Durbin :

A A A A a
(31) Prt1,j = Prvj — @1, 141 Pr,r—j+1 (J =12 ... )T)l
and where
A AT T 1
Pr+1 7o Zjﬂ] (PTJ pT'H-j

A
(32) Qry1,) = —— A
5k Ej:] P Py

We have an A R (k — 1) process if a sequence of u’, s beyond the k — 1
lie within the 959 limits + 1,96, where

A
(33) v = P
V V (Qxx)
is distributed normally and where
Arne 1
(349 V(opu) = Tk

A A
By using the estimated first difference p. * s we obtain the first ¢k’ s (for
k =1,23,4,5), ie.

e e L TN

A A
11) Note that ¢,, = p, .
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A A
¢;; = p; = — 0,03
. A A
RO e b e 0,055 R 0T0000 IS
e r 0,009 — 0,05095
1 —p%4
A A A A AR
== ==
gop = 2 Ju B PmPL _ 006289 ,
1+ @2 p1 + Qa2 py
where
A A 2
o
o= e C =) agisy
b= o
z A A A A A A
gu=-—DTt T dub e B _02u479.
1+ @31 p1 + @32 P2+ Pss Ps
where
A A A
Q3 = P21 — P33 P22 = — 0,03473
and
A A A A
@3z = Pg2 — P33 Qa1 = — 0,05293 ,
and finally
% A A A A A A A A A
D Ps—-q)u P4—<P4: Pa—q;\m 8\2—(43:4 Rl 01563
18T ‘P41 P1+ <P42 P2+ Qa3 Ps + Paa P4
where
A A A A
P = P31 — Qas Ps3 = — 0,05012 ,
A A A A

Qg = P3g — Pua Psg = — 0,06589 ,

A A NN
Qs = Pgs — Qus 951 = — 0,77139 .
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fn the the following Table 2 we report the estimates uy for k =1,2,3,4,5.

TABLE 2
A e
Co ke e
1 — 0,03000 0,13609 — 0,2204
2 — 0,05095 0,13736 — 0,3709
3 — 0,06289 0,13868 — 0,4535
4 — 0,24479 0,14003 — 1,7481
5 — 0,15630 0,14142 — 1,1052

From this table we observe that all u,’ s lie within the 959 limits and
we conclude that an AR (0) process is adequate to fit the given time series. The
9 (B) is a zero degree polynomial, that is all 8’s are zero, and this is equivalent
to say that in the model (32) v, = 1.

Comparing the results of sections 4.1 and 4.2 above we conclude that an
IARMA (0, 1, 0) process fits our data. Therefore the model ¢(B)z, = 06(B) o,
in this case becomes (1—I) Y, = a, or A Y41 = @, and the optimal predictor
ISAY ¢ = Yo, = €, 16T Y e Y SOTEY (e = N oyt

This means that the expected value of the disposable income at period t
equals with the value of the last period measured income 2.

Since the autocorrelation and partial autocorrelation functions have not a
-cut - off point, it means that our model is a mixed TARMA (p, d, q) process
withp = q =0 and d = 1.

4.3 Liquidation of the Autocorrelation Function

The autocorrelations p (u) of the a- process are related to the autocor-
relations p. (Y) of the Y - process by the relationship

12) That this is the appropriate model it can easily be seen in the Diagram 2 (in the

A
Appendix) where almost without exception all the first twenty four pr * s are between #+ 0,20,

A
‘which is an approximation of the standard deviation V V(pr) =~ 0,14. The fluctuations of

A
#he pr function show, according to Box and Jenkins’s terminology, a «white noise».
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— 1 ©(B) ¢ (BY
B3 pr (@) = k? 0(B) 0 (B P (Y)

where

— _9(B) ¢ (B
= @@y oW

Now because in our model ©(B) = 0(B) = 1 we have k — po (Y) and

: _ A
P (@) = pc (Y) / po (Y) ; Using the estimated autocorrelation coefficients pe (Y)
of the Y - process we easily find the estimated autocorrelation coefficients of

. > A A
the o -process (the residual process) by p: (0) = p, (Y) / po (Y), which shows.

A PNy o A
that the p: (@) function is very similar to P« (Y) function. This means that the
operator 61 (B) ¢ (B) = 1 converts our Y - process to a white noise.
Another, rather empirical, way of testing that in the model (I—L)Y =[1—

0(B) ]Jo,we have 0=0is to use different values, between 1 and — 1, for the parameter
) A A A A
0 in the equation o, = 0oy + Y, — Y., and to take that value of 6 which

A A 2 ¥y
minimizes ¥ «,% The minimum X a,2 will be given by using 6 =0 (ory, = I).

6. Conclusion

From the results of the previous section 4 we conclude that the model
A Y1 = a, fits our data and therefore the optimal predictor is N SNEL

Now if this is the case then equations (1), (2) and (3) in Zellner et. al.
paper can be directly estimated. The advantage of the direct estimation is that
we can estimate these equations by using the classical least squares estimation
method ; we may have a loss of efficiency but not inconsistency when we assume-
autocorrelation of the direct disturbances, which is the more probable case in
the time series.
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