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Preface

The broad objective of control theory is to provide systematic methods to
affect systems in a desired way (i.e. to be more reliable or to work more accu-
rately or more economically in spite of perturbation from outside the system).

The optimal control problem in its general context is :

For some well-defined goals, determine, within the set of all admissible policy
parameters (or controls), the time sequence of the controls required to achieve
these goals in an optimum manner. If the controls required are expressed as an
explicit function of the system state, they are referred to as a control law or con-
trol strategy. The model and the nature of the control problem as encountered
here are mostly identical in form to the control problems encountered in electro-
nics and aerospace industries, We have limited ourselves to the linear, discrete -
data, time - invariant systems, since this is the usual case when optimal control
is to be applied to.economic policy planning. The «system» in this case is presented
by an econometric model —namely a set of difference equations. The boundary
conditions are the initial values of the variables, and perhaps, desired values for
the variables at some terminal time. Finally, the cost functional is a quantitative
representation of the planner’s goals, objectives, and utilities,

For the above class of optimal control problems, the perfect measurement
of the system state is usually assumed. Hence the state transformation function
(or system transition equation) is only considered, since the observation equation
becomes redundant.
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The main objective of this paper is to present the mathematics involved to solve
the optimal control problem through using the technique of discretized minimum
principle. This way the solution is derived sequentially by solving a set of Riccati
‘type equations. Besides, we have developed a proper computer package, and part
of the paper serves as a manual for the developed program to solve a linear, di-
screte - data, time - invariant optimal control problem, with time - varying weights
‘which refer to the prescribed set of goals.

DERIVATION OF THE DISCRETE MINIMUM PRINCIPLE MANUAL FOR
THE COMPUTER PROGRAM RICCATI

I. Purpose of the program

The computer program RICCATI — written in FORTRAN IV — computes
the optimal control sequence and the corresponding state trajectory of a control-
lable *, discrete - time, linear system according to the specified quadratic cost
functional (performance criterion). The time - varying feedback coefficients and
the co-state vectors are also computed and printed.

The derivation of the solution is based upon the discrete minimum principle
which allows the computation of the optimal control and state vectors by solving
-a set of Riccati type equations.

2. Theoretical background

2.1. Application of the Kuhn - Tucker theory in convex programming

Given the MP problem

min j (y)
8ot B(y)i=0
where i)
F(y) = ;

i ()

* For details regarding controllability see : A. Lazaridis, «Optimal Planning for the Cattle
iIndustry in Greece : An Application of Optimal Control», Ph. D. Thesis, University of Birming-
tham, 1977, pp. 185 - 187.
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The f; (y), i=1, ..., k, are scalar - valued functions of the s- vectory, and
F(Z) is a vector-valued function of dimension k.

Assumption: j(y) and F(y) are all differentiable in each of their argu-
ments, and the constraint function F (y) is convex in Y.

— Define the Lagrangean
L (v, P) =i + PEGQ)

where p € E* is the vector of Lagrange multipliers. (Prime denotes transposition),

Kuhn-Tucker theorem

i, vy minimizes j (y) subject to F (y) = 0, it is necessary that there
exist some p * vectors of multipliers such that

vy *L=20 1.1

Vp *L=0 152

where vy * L denotes the gradient of the Lagrangean with respect to y, evaluated
atiyi—tyi> =

2.1fy*isa solution to the stated MP problem, it is sufficient that
(1.1) and (1.2) hold, and that for all y

L(X’E')>L(X*’(_P*)‘*‘[Zy*L?’_(_y‘l*) 1.3

Egs. (1.1) and (1.2) are the necessary conditions for a solution to the MP
problem, but in general there might exist more than one pair of y* andp * satis-
fying those conditions. Theorem 2, however, states that if the optimization problem
is such that the Lagrangean has a unique minimum with respect to y (note that
(1.3) is just a convexity condition on L), then there is only one extremal solution
and (1.1)-(1.2) consitute the set of necessary and sufficient conditions for the
optimum.

2.2. Application of the K - T theorem to the Linear, Discrete - Time Optimal Con-
trol Problem

Given the system transition equation
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x (i+ 1) —x @) = Ax()+Bu@ (1.32)
A== s sy Nl

where x ¢ En, is the system state vector,

u € Em, is the system input (or control) vector

and A, B are coefficient matrices of proper dimentions.
Assuming that x(0) and N are fixed, we want to minimize the cost functional
. N—] . .
j=M[xMN)] + £ 1@, 20) (1.3b)
i+o

To simplify the presentation it is assumed that N = 4.
To convert the optimal control problem to a MP problem it is necessary to-

define : — the vector - valued function y € E®+mX by
x (1)
g | % ™)
e (0)
u(N—1)

and the vector - valued function F(y) € E "N by

AX (0) + Bu(0) + x (0)— x(1)
AX(1) +Br (1) + x(1)— x ()
Ax(2) +Br@2) + x(2 —x(3)
AX@3)+Bu@)+ x(3)—x4)

F(@y) =

It can be seen then that the equivalent MP problem has the form:
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mix j(y) =M[X(N) ] 4 I (3)
s.t. F(y) =0
The Lagrangean is defined as

L(Z,P)=L(x,u,p) = M[x(N)] + I(y) + P’E(y)
“where P g EwY

Writing the Lagrangean in expanded form we have :

L(x,u.2) =M[X(N)] + I[¥]

AX(0) + Bu(0) + x(0)— x (1)
AXx (1) + Bu(l) + x (1) — x(2)
AX(2) + Bu (2) + x(2) — x)3)
AX(3)+Bu3)+ x(3)—x(4

+ [B Py Py P/]

“where ‘PiEE“,i=1, sic oy Nk

By further expansion the Lagrangean is written as
Lx,8,0)=M[x(N)]+1[Y]

+ P AX(0) + Py Ax(1) + Py Ax(2) + P Ax(3)

+ P"Bu(0)+ Py Bu(l) + Py’ Bu(2) + P, Bu(3)

e e A (O) s T X (1) Sk B X (2) Py xi(4)

e 1 e () o B, G e(0) B R (3) TR G x (4)

Before applying the K - T conditions we form the gradient of C with respect
to x,, fori=1, ..., N-1.

—-—gil = Alﬁz aF Lty = v

:i = A"Pyg+ Py — P,
==

ac

= A'Py 4+ Py — ps



In general, for i=1, ..., N-1, it is

vX;C =AP(i+1)+ B (i+1)—P(i)

For i =4 =N we have

G1F S P,
0X4

in general, for i = N
v yC = —FP(N)

Similarly we fndi that
yu;C = B'p(i+1), fori =055 o

Considering the K-T onditions, we have

yi*L =0

i.e.
xX*L =0
[VE.*L =0

which yield
EAL =2 4 AR EA 1)+ R E D) =P =0
o ¢

1i="5]" , N—1
hence
s g ol L :
PR (ily—=020) = ax*_—Ag )il e Nl
=, o |

=2 Mzt ()]

oxn*

661:

(1.4y

1.5)
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al

VEAL =t +BR*(i+1)=0, i=0,...,N—1 (1.6)
VDi*L = — x*(i) 4 x*(i—1) - AX*(i—1) +Bu*(i—1)=0,i=1,...,N
i.e. X*¥@)— x*i—1) =Ax*i—1)4 Bu*i—1)

Shifting to i + 1 we get

vP* L =0, i=0....,N—1

which yields
X *i 4 1) — x*{) = Ax (i) + Bu *(i) {1.7)

Egs. (1.4), (1.5), (1.6) and (1.7) constitute a set of necessary conditions for
the solution of the optimal control problem. We will restate those results in the
-dynamic form of a minimum principle. Define the scalar function H, which is cal-
led Hamiltonian, by

H(x(@, 2Gi+1), u@d) =1(x(@), u())+ p'(+ 1) (Ax()+Bu@) (1.8)

Note that p(i) (i =1, ..., N) is the n-dimensional co-state vector evaluated at
time i. Again let x*, u*and p* denote the values of x, u and Db that yield
an optimal solution. It can be seen then that (1.4) can be written as

; ; oH
* 1) —p*(i) = — ——— ; ;
L2t ) A 0X%(i) |on the optimal trajectory i =1, ... N-1

Eq. (1.5) need not be restated. It holds as it stands, i.e.

0 MIx*n]

DAN) = o

As long as H is convex in u, eq. (1.6) can be written as

oH

U )

on the optimal trajectory i =0, ..., N-1

Eq. (1.7) is equivalent to

oH

X*i+1)—x*i) = ErY )

on the optimal trajectory i =0, ..,, N-1
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2.3. The Discrete Minimum Principle

We can state now the discrete minimum principle. Let [X*()], i = 0 505
N, be the state trajectory of the system described by (1.3a), corresponding to th,
control sequence {u*@)}, 1= 0, ..., N-1, with x(0) fixed. Then if {u*@ }
minimizes the cost functional (1.3b), it is necessary that there exist a sequence of
vectors p *(i) € E* , i=1, ..., N, called the co-states, such that

1. The Scalar Function
H(x*@), p*0 + 1), u*@®)) =1 CE*D, 1¥0) +
+p*({i4 1) [AX*@) + Bu*@) ]

called the Hamiltonian is minimized as a function of u(i) at(ui) = u*() for all
i=0, ..., N-1. The above can also be stated as

H(x*@), P*@i+ 1), w*@i)) = min H(x *@), p*{ + 1), »@))
u,eu,

where U, denotes the control space.

2. The dynamics of x*(i) and P*(i) are determined by the following diffe-
rence equations

X (i 1) — x*(1) = 7172(1?_.?1‘) | =AX*0)+BL¥0) (1.9)
; : H
pYi+D— 20 ="—sm—|, (1.10)
-with boundary condition -
A ' :
_’L*(N)= —-a—i;*_‘M[_‘.*(N)] (1.11)

The control problem which will be discussed has a linear plant equation with
:a quadratic cost functional, so that the convexity condition of the K - T theorem
is indeed fulfilled. This, in turn, implies that an extreme solution satisfying the
.conditions derived above, is the unique optimal solution.

The plant equation is as in (1.3a), i.e.
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X(i+1)—x@G) =Ax@+ Bul) i=0,..,N-1I (1.12)
with x (o) and N fixed (1.13)

The performance criterion, given below, has been formulated in a more gene-
ral form, taking into consideration that the controller (decision maker) wants to
minimize the sum of the weighted squared error between the feasible and the pre-
scribed (nominal) output position of the system over the finite number of the time
instants considersd. In other words, given (1.12), (1.13) and the prescribed (no-

minal) state and control paths { x (i), u(i-1)}, the aim is to determine the
optimal sequence { X *(i), u*(i- 1)]fori=1,...,N, such that the cost functionaf

; 1 =
=7 [xN) —2MTAN) [x N) —x (N)]

N—I

1 sl
ey s O OB — = @ D)=

1=o0

W @] RO () — 1 @] ] (1.142)

is minimized.

Note that Q(i) and R(i) are the so-called weighting matrices which usually
are diagonal. Q(i) is n X n positive semi - definite and R(i) is m X m positive ~
definite. Both are symmetric (or assumed that they have been transformed to-
symmetric matrices).

First we form the Hamiltonian
: 1 L P
H(x @), pG+1), () =75 {[_X_(i) —xMl'eO)[x0) —xO]
4 @) —B @] RO (26— ] } +Pp'G+1)AX + p' (i+ 1)Bu(y

From (1.9) we have

s 27 = A2 O —Br O =gy |, O

From (1.10) we get
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oH

el A e T s —— Q) x* () + QM) () +
—A'P*(i+ 1) (1.15)
and PHN) = o M {x* ()

Mx*(N)] = 5 [2*M) —TMIQMN[* N —X@®)]  1.15)
Hence

0 M[x*)]=QM) x*N)— QMN)F N)= p*N) . (I.16)

*
0 Xn

From (1.16) above-it is clear that p *(i) and x *(i) are linearly related such
that

P *([) = K (i) x *{) 4 a (i) => p*@i+1) = KGi+1) x*(i+1)+ 8Gi-+1) (1,17)‘

where K(i), i = 1, ..., N are symmetric, positive semi-definite matrices. The mi-
nimization of Hamiltonian — which is convex in u —is written

oH 3 : 5 208
U@ | 0, => R()u *(i) — R() i(i) +BP*(i+1)=0
=> 1*@{)=—R1G)B2*+1) + T @ (1.18)

S SSbeiitationton eq. (1.18) into (1.14) for u_ *(i) yields
EHi4+ 1) —x*@)=Ax*@—BRTOBR*GE+1)+Bug  (1.19
Substituting (1.17) into (1.19) for P *@i + 1) wé get
X K4 1) — x %) = A x *() — BRI () BK (i + 1) x ¥ + 1) —
—BR™ () B2 (i + 1) +Bu (i)
=>[I+BR™() B'K(i 4 )] x*(i+ 1) = I+ A) x*Gi)—

—BR' () B8 (i + 1) + B ()"
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Denote I + BR-1(i)) B’K (i + 1) =E(i)=0, ..., N-1. Note that E-1 (i),
exists, since for all i, E(i) is the sum of a positive definite and a positive semi -
definite matrix. Hence,

x*(@i+1)=E7 @) (+A) x*@) —E'()BRT)B & @+ 1) +
+ E™ (i) B u (i) (1.20)
We consider eq. (1.15), i.e.
PXi+1)—Dp*@) =—QM) x *() +QWH) XM —A" p*i+1)  (1.21)
Subsitution of (1.17) into (1.21) for P
KGi+Dx*0@+D+ 2 (+1)—K(@x*(D) — £3d =—QM)=*i +
+QUWXE@ —AKGI+)x*GE4+1) —Aeg(+D (1.22)

After rearraning terms eq. (1.22) can be written as

(I+A)Y K(Gi+Dx*(i+ D)+ (I+A)'g (+D—K@x*@)— 20+

+ Q@M x*(1) — QM)x®M)=0 (1.23)

Substituting eq. (1.20) into (1.23) for x *(i + 1) and rearranging terms, we get
1+A) ‘K (i + 1) E-* (i) (I + A) x *(i) —( + A) "K( + 1)E-* BR() B g (i-+1)
+A+A)KG+DE @) BTH) +T+A) ‘gi+DH—Ki)x*D—& @
+ Q@) x*@ — QW) x () = 0 (1.24)

We can obtain one solution to (1.24) above by requiring
I4+A) 'K@i+1) B-* () ([4+A) x *@) — K(@) x*{) + Qi) x*®) =0  (1.25)
(and '

—(+A) 'K (i+-1) B (i) BR" () B” £ (i+1) + (+A) 'K({+1) E* B2 O

+ I+ A) £ (i+)— g H—QH=( =0 (1.26)
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Eq. (1.25) yields (noting that the trivial solution x (i) = 0, for all i, is rejected)
K@ =>I+A)KG+ DE*@ I+ A)+ Q) (1.27)
And eq. (1.26) can be rewritten as
g(i) = — (4 A) 'K i+ 1) B () BRZ () B'e (i + 1)+

4+ T+A)’KG+ HEL@Bu @)+ I+ A)’gd 4+ 1)—Qe) = () (1.28)

Egs. (1.27) and (1.28) are Riccati type equations which can be solved back-
‘wards in time given the boundary conditions (from 1.16)

KN =QN), g(N) = —QN)x ()

It is obvious from the above equations that the computation of the matrix
sequence { E-1(i) }, ... precedes the computation of { K(j) }, which in turn precedes
‘the computation of the sequence { 8 (j)}, j=N-i,i=0, ..., N-1.

The optimal state trajectory is then computed from (1.20). The optimal con-
trol sequence is in turn computed from (1.18), i.e.

u*(® = u (i) — R(G)B'P (i+1)

is usually referred to as the vector of intercepts. Substitution of eq. (1.29) into the
system transition equation (1.12) finally yields eq. (1.20) which often is written as

+ E-1 (@) Bu () (1.292)

The presentation by (1.29a) above is known as the closed-loop system in di-
stinction from (1.12) which is referred to as the open-loop situation. It is varified
from (1.29) above that a linear system with a quadratic cost functional yields a
linear control law. In the case when the process is stochastic, the derivation of
the Riccati type equations follows the same steps after adding a white noise
vector to the system transition equation (1.12).
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It is noted that we have considered the more general case where the weighting:
matrices are time-varying. In the developed computer program these matrices,
as wellas matrices K, BR-! B’, R-! B” and E-! are treated as 3-dimentional matrices,
the first dimension referring to the number of the discrete time instants consi-.
dered.

Observing eq. (1.15a) we see that letting Q;; (N) become larger, approaching-

of a two-point-boundary-value control problem by merely adjusting the weights.
in the Q(N) matrix.

So far we have shown the close relations between the K - T conditions and:
the discrete minimum principle, the application of which allows the sequential
solution of the problem as it would be treated by dynamic programming. However,
the problem of dimensionality which is the main disadvantage of the latter appro-
ach has led to the development of more efficient methods, like the minimum (ma-
ximum) principle, for obtaining numerical solutions to multivariable optimak
control problems. It is noted at this point that neither dynamic programming nor-
the application of the minimum principle yield the closed-form solution which.
can be obtained through using another procedure * which is based upon the pro-
perties of the generalized inverse (pseudoinverse matrix).

2.3.1. Few Points Regarding the Co - State Vectors

Given a cost functional defined by

i=1

it is assumed that j* is the optimum (minimum) cost that corresponds to
{u*(@—1)}and { x* (i)},i=1, ..., N. Then

= p S(x*@), utG—1))

i=1

In the problem discussed previously S is quadratic but this is not necessarily-
so for any optimal control problem.

* We have found in practice that weights in the visinity of 0.9E6 wil] yield the desired result..

** For details sse : A. Lazaridis, «Optimal Planning for the Cattle Industry in Greece;
An Application of Optimal Control», op. cit., pp. 156-169.

This procedure is practically applicable for discrete-time optimal control problems of mo--
derate size since the solution is not derived sequentially.
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Now define
N
*(x@m, )= z S(*(@), n*i—1)) t= 1, P
i=t

In other words j *(_X(t), t) denotes the optimal cost that would result if the
system is to be controlled from time i = t to the terminal time i = N. And, among

happens to be at time t.

One of the fundamental results of the Hamilton - Jacobi theory states’that
if the functional from for j *(_x(t), t) can be obtained, then the optimal co-state
vector at time t is given by

D) = —a—x% (X, 0 (1.30)

Thus each co-state variable at time t can be interpreted as the marginal cost
resulting from a small change in the value of the corresponding state variable
at time t.

It is noted that at the terminal time (i = N), eq. (1.30) reduces to the standard
transversality condition

ie.

RAN) = — 2 MLx* () (130

From eq. (1.31) it is clear that for the terminal time the interpretation of the
«co-state variables is similar to that of the Lagrange multipliers in a static opti-
mization problem. At any other time, however, the interpretation is rather dif-
ferent. From eq. (1.30) it is concluded that if we change the system state at time t
by a small amount A x(t), then the additional (positive or negative) cost that will
result from controlling the system optimally up to the terminal time, is given by

Aj*(x (1), () = 2* A X (1)

Thus the co-state variables are dynamic shadow prices that measure the
marginal cost of each state variable, indicating, therefore, which of the latter ones
are more or less critical —at any particular time instant— to the cost of the
optimal policy.
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3. Conversion of the Conventional Econometric Model to the Control System:
Format. (System Repressentation in State Space)

It is assumed that the econometric model under consideration has the follo-
wing structural form

where
Y is the vector of the endogenous variables
2z is the vector of the exogenous variables
_b is the vector of constants

_& is the vector of the uncorrelated disturbances, whose non-zero elements:
correspond to the stochastic relations, and H; and D; i=0, 1, ..., K;
i=0,1, ..., q) are coefficient matrices of proper dimension. These para--
meters have been estimated by standard econometric techniques.

It is further assumed that the policy variables are a subset of the exogenous.

variables. Using the lag operator L, and denoting I- H, by oA, (1.32) can be re-
written as

oA y H G Spt iy e
I Ly (t) 1 k—1 Il 1 q—1 ~'p
I
k=t ya(Daeslnat

I -z (1) h I

| Lz (t)

I : 0 0 0 0 0 0

_ I

& ol S O ) i
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y@-1 b, D, & (1)
0 o)
y(t- i<+1) RS
¥y (t-k) o 1 :
A 1 A + ; (1.33)
0 z
z (t-q+ 1)
z (t-9) 0 o

Eq. (1.33) can be written in a compact form as

A
ALz () = Az (-1 B LM+ W0

Ay x G4 1) = Agx () + BLA B0 + LAX0) (1.34)

with the anticipation that L-! denotes the linear advance operator such that
L-» y(t) = y(t + n). Egs. (1.33), (1.34) indicate the input requirements for the
computer program RICCATL

Matrices A;, Ao and B; must be input individually, row - wise and in the
indicated order (see also next section).

The system in (1.34) is transformed to the conventional control system for-
mat by premultiplying (1.34) throughout by A;-*, to yield

X+ =Ax®+Br®)+ C¥ @O (1.35)

Note that the system in (1.34) and the one described by ( 1.35) are equivalent
if A, is non-singular. This assumption is satisfied iff matrix (A (ie. I- H,) is
invertible. -

Note also that with the presented formulation the control vector consists
of flexible control variables (i.e. the actual policy variables) and inflexible ones
(i.e. all the other exogenous variables including the unit corresponding to the con-
stant terms). Under the above consideration one has to properly adjust the weight
which refer to the inflexible inpust, so that these variables track exactly their no-
minal paths. :
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4. Input Description for the RICCATI Program

Data items may be input in any format, separated by at least one space.
The data required must be input in the following order :

1. Two integers.

The first one simply identifies the «run» number with a given set of data,
The second (ISSTO standing for IS STOCHASTIC?) is used to identify whe-
ther the deterministic problem is only to be solved (ISSTO = 0) or both the deg

terministic and the stochastic case are to be considered in the same run
(ISSTO # 0).

2. Three! integers identifying the dimension of the state vector the dimen-
sion of the control vector and the total number of the discrete time instants con-
sidered (i.e. n, m, N).

3. The following free format specifications are read in each on a new re-
cord starting from the first column

(nFO.0)
(mFO.0)
(NFO.0)

4. Eight integers IA1l, IAO, IB1, IUBAR, IxBAR, IW, IQ, IR, referring to
the eight matrices which consitute the main block of data for the RICCATI pro-
gram. The value of each of the above integers is either O or -£ 0, depending upon
the user’s option to feed all the elements of a matrix (even the repeated elements
in which case the corresponding integer of the ones specified above is set equal
to 0) or to call for a subrouting which reads a matrix with repeated elements in
each row (in this case the corresponding integer is 5= 0). It is noted that when this
particular subroutine is called then the input format for the corresponding matrix
which is to be read needs to be adjusted accordingly.

Example :

Assume that matrix A; (see egs. (1.33), (1.34)) is

28,

o © = O
= 1= =) (=)

then if the integer corresponding to matrix A;, i.e. IAl is set equal to zero, then
matrix Al has to be fed as it stands above (mode I). In case when one wants to
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-avoid feeding repeated elements and IAl is set equal to, say, 3, then matrix A,
-must be fed in the following way (mode II).

2 )

(3F0.0) 1st row
2.5 0. 1000003.

4

(4FO.0) 2nd row
1. 1000002. 0. 1000002.

4 )
(4F0.0) 3rd row
0. 1000002. 1555500 -
3

(3F0.0) \ 4th row

0. 1000003. 1. |

The program identifies that the element proceding the number 100000n. is
“repeated (n— 1) times.

This facility is worthy to be used for highly - dimensioned cases only.

The eight integers as they have been displayed above refer to the following
“matrices

IAl to A; (nX n)
IAO to A, (n X n)
IBl to¥B; (nX m)

IXBAR to the (n X N) matrix XBAR, whose columns are the nominal values
for the state variables

TUBAR to the (m X N) matrix UBAR whose columns are the nominal values
for the control variables

IW to the (n X N) matrix W whose columns refer to the sfmulated noise vector
for each of the time instants considered.
IQ to the (n X n) weight matrices Q(i) for i=1, ..., N
“IR to the (m X m) weight matrices R(i) for i=0, ..., N-1

It is recalled that Q and R are the weighting matrices (see eq. (1.14a), section
:2.3). The more general case where Q and R are diagonal is explained in details
“below. In case that crossproducts are also penalized in the cost functional one

43"
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must be sure that the corresponding weighting matrix has been transformed to
a symmetric one *.

MatrixJAl (mode I or mode II)
Matrix AO ( » » » »  »)

Matrix B1 ( » » » »  »)

00 9 N W

9. XBAR (i.e. x (j)for j = 1,....N)in the form of an n X N matrix (mode I

(mode I or mode II). Also the j column of this matrix refers to the nominal
values of the control vector at time j (i.e. IE(j) ). !

must be omitted.
12. Penalty coefficients regarding the state variables.

a) Cross - products are also penalized. In this case a string of N matrices
each of dimension (n X n) must be fed under the mode II (i.e. IQ #0).

b) None of the cross - products is penalized. In this case the weight matrices
Q@),i=1, ..., N, are diagonal. Hence only the diagonal elements are fed in the
form of an n X N matrix, say Q;. The i** row (i=1, ..., N) of Q, refers to
the main diagonal of the Q(i) matrix. Note that Q, is read under the mode I.

13. Penalty coefficients regarding the control variables.

a) Cross - products are also penalized. In this case a string of N positive
definite matrices, each of dimension (m X m) must be read in under the mode I

(IR #0).

x" Qx = x" Qx where Q = 1/2(Q + Q’) is symmetric.

** Random variates conforming to the stochastic properties assumed for the disturban™
ces of the econometric model can be generated from the covariance matrix of the residuals through
using Cholesky’s factorization. For details’see : A. Lazaridis, «Optimal Planning for the Cattlo.
Industry in Greece; An Application of Optimal Control», op. cit., pp. 85 -85a (footnote 43)"
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b) None of the cross - products is penalized. As in the previous case only
the diagonal elements are fed in the form of an m X N matrix, say, R;. Again
the i th row of R, refers to the main diagonal of the R(i) matrix. Matrix R, is
read in under the mode I.

14. An integer (MORE) which is used to identify whether the calculations
are to be repeated with the same basic data and a new set of weights (MORE #+0)
or the control is to be transfered to the STOP FORT RAN statement (MORE = 0).
If MORE.NE. O, the new weights are read in according to specifications 12 and
13 above. Finally MORE has to be set equal to zero.

Example :

Consider the system described by the difference equation
y(t) = 0.02y(t) + 0.4y(t-1) + 0.0ly(t-3) — 2.5z(t- 1) +
+ 0.002z(t-2) + 11.7 + ¢ (1.36)

Eq. (1.36) can be put into the state variable form by introducing artificial
variables using the linear lag operator L. [ie. Lr» X(t)=X (t—n)]

0.98 y (1) 0.4 0 0.0 0.002 —y(t-l)
1 Ly (t) 1 Ly(t-1)
1 Ley(t) - 1 L2y(t-1) i
1 Laz(t) 030 0 0 Dz(t-1)
1.7 2.5 i
e 0
=P 2(t-1) + 2 (1.37)
S b v 0

respectively.
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It is assumed that

~— The initial conditions are

x(0)=[5 4.8 4.1 2.5]!

— For a total number of discrete - time instants N = 5, the nominal values for
the state vector are :

x () x(2) =0 x4 x(9)

7 8 9. 10. 10
e 48 7 8. 9. 10

4. 4.5 5. 7. 8.

3 3.6 4.2 4.9 5.5

u(0) u(l) u(2) u(3) u'(4)
1 1 i, 1 1
UBAR =
3.6 4.2 4.9 5.5
— The simulated noise vectors are
w(D w(2) w(3) w(4) w(5)
E0%0s 0.1 0.0009 —0.0911 0.002
0 0 0 0 0
Wi 0 0 0 0 0
0 0 0 0 0

— The weighting matrices which assumed diagonal are as follows :

Q;i(1) | Q;ii(2) Qii(3) Qii(4) Qii(® (i=1,..., n)

0.1 0.2 0.2 5 50.

=t 1.5 1.6 7, 6.
¥ 1.5 1.6 24 3
4. 10. 10. 10. 20.




R0 Ry() Ru@ Ry® Ry@ . (=1 ..., m)
0 9.E5 9.E5 9.E5 9.ES 9.E5
i o 10. R, 20.

The input data for the above example problem must be as follows :

1 1 (ie. first run with this set of data where the deterministic
and the stochastic case are to be considered)

4 2 5 (e nmN)

(4F0.0)
(2F0.0)
(5F0.0)

OO IO ) 0 R (i e od el for matrices A, and W)

0.98 0. 0. 0

0. 1. 0. 0 :

0. 0. 1. 0 Matrix A,

0. 0. 0. 1

4 Ist row )
(4F0.0)

0.4 0. 0.01 0.002

3 2nd row
(3F0.0)

1. 0. 1000003.
) Matrix A,

(4FO.0)
0. bR OIS G

2
(2F0.0)

0. 1000004.

4th row

|
|
|




11.7 —2.5

0. 0.

0. 0 Matrix B,

0. 1

5 4.8 4.1 2.5 (i.e. initial conditions)

7E 8. 9. 10. 11.

4.8 7. 8. 9. 10. ix XBAR (ie. "o R
4 SR 7. 3. Matrix i.e. .{'(1), i=1,...,N)
3 3.6 4.2 4.9 5.5

1. 1. - : ; : R v

: . ! Matrix UBAR (i.e. u (i),i =0, ..,. N-1)

3. 3.6 4.2 4.9 5.5

5 : )
(5F0O.0) ] Ist row

—0.03 0.1 0.0009 —0.0911 0.002
2
(2F0O.0) 2nd row
0. 1000005.
- i Matrix W
(2F0.0) } 3rd row
0. 1000005.
: |
{2F0.0) 4th row
0. 1000005. }
)

0.1 1. 1. 4.
0.2 1.5 1.5 10.
'0.2 1.6 1.6 10. Matrix Q1

5. 2. 22 10.
50. 6. 3. 20.
'900000. 4
‘900000. 10.

900000. 10. Matri s
900000. 10.
900000. 20. ;

0 ( MORE).
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Additional Remarks

RICCATI was created for use on the 1906A ICL computer in standard
FORTRAN and only its binary code (BINRICCATI) is accessible. It can be run in
two forms : either by card input or by use of a data file**. In either case the
substantial command is PROG LOAD BINRICCATI with a time parameter 1
MINS or more *. Under the current (GEORGE IV) operating system, the MZ

requirement is 180K **.

Current Limitations

n < 20
2<m <20
N <20

* For a test problexh with _x_ 9-dimensional, u_8-dimensional, N = 20, and two sets of

-weights where the deterministic and the stochastic cases were considered, the required time was

41 secs.
** These specifications are subject to revision, depending upon the available MACRO

regarding the University of Thessaloniki computer unit. Final details will be released by the end
«of October 1978.
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