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Introduction

The United States is an economically rich country whose production of consgmcr'
goods is high relative to the size of its population. It is therefore faced incrL.‘i?S'“gl"A
with the problem of what to do with these consumer goods when their utility. as
judged by the consumer, has been exhausted.

All “used™ products (solid waste) are disposed of by one of two methods: rct.:)’
cling' or collection and disposal by any of several different ways. Since the coll?cl‘on,
of solid waste involves routing refuse via various transport modes from the pon?l of
generation to the point of disposal, the object of this study is to develop an ﬂ‘gom‘hm
which may be used to define and schedule near-optimal collection plans for refuse
systems facing high seasonal variation in the quantity of solid waste gcncrated-

Section 1

The general distrubution problem was formulated by F.L. Hitchcock in 1941%
Independently. in 1949, T. C. Koopmans® also sutdied it. thus the “Hitchcock-
Koopmans Transportation Problem™. George Dantzig?, in a 1951 application of the

I. Recycling is probably the necessary long-run method. See arguments in chapter one of unpubh..
shed paper. “Hybrid Optimization Technique for the Solid Waste Collection and Disposable Prnblchll_
by Angelos A Tsaklanganos and Michael Clayton presented at the Joint National Meeting of the l“b“_
tute of Management Services (TMS). The Operations Research Society of America (ORSA) and the SY

: : - ; . - T oW
stems Engineering Group of the American Institute of Industrial Engineers (ALLE) Atlantic City- Ne
Jersey. November 810, 1972,

5

Hitcheock. F.L.. “Distribution of a Product from Several Sources to Numerous Localities «
Journal of Mathematical Physics (Studies in Applied Mathematics), Vol. 20. 1941, pp. 224 230.

3. Koopmans. T.C.. “Optimum Utilization of the Transportation System™, Econometrica, supple:
ment to Vol 17, 1949, pp. 136-145.

4. Dantzig. George B.. *Application of the Simplex Method to a Transportation Problem. “Activit)

Analysis of Production and Allocation, Chapters XX1I1. Cowels Commission Monograph No. 13. ed.
T. C. Koopmans. New York, 1951,
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simplex method. proposed a solution technique which was widely utilized until Ford
anq Fulkerson® published their paper in 1956, basing their algorithm on the combina-
torial procedure developed by H. Kuhn called the “Hungarian Method™™®. No further
\\‘ork. appears to have been done in this area until the late 1960’s when F. Tillman
considered the multiterminal distribution problem with probabilistic demands’. J.
Q.lmn. et. al.,* approached the specific problem of distribution in a solid waste colle-
Clon system in 1965. using a simulation technique to determine the significant para-
meters and to differentiate between those of primary and those of secondary impor-
tance. Since 1965, two other simulations in the area of solid waste collection have
been published, the first by Truitt. ef. al.,’ in 1969, and the second by R. M. Bodner.
el. al," in 1970. .
: The general distribution problem as formulated by Hitchcock may be stated as
'0“0.\\["5”. Denote the cost of shipping one ton of a produce from the i" factory to
3;:”:[);:3)1.\’ by ay s apd thc number ot tons shipp?d by x, . The total cost of
n. y, for m factories and n cities is, therefore:
m n
y=> ) ajxj (1)
The problem is to minimize y. Bylthxe najulre of the problem, x  is greater than or
€qual to zero for all i and 13

X;>0i=1,2,...m (2)

= | B S ST)

Hitchcock autlined a solution procedure, which is similar to the simplex method.
vehi':l:);;mans' l.echniquc was based upon marginal costs whereby Lhe MONEMEAE of
4 S Irom point to point in the distribution network was defined in terms of mar-
g'f]f‘l costs, and the objective became to minimize the sum of these marginal COSLs.
Clt.mg Koopmans® example'?, consider two points, A and B. Assume A to need three
train loads of products a day. while B requires six train loads. The net empty move:s
ment of train cars is therefore three cars a day from B to A. The marginal cost from
L e .
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Sk Ford. L. R.. Jr.. and Fulkerson. D.R.. “Solving the Transportation Problem.
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" Journal of the Sanitary Engineering Division, ASCE. Vol. 91. No. SAS. 1965. s
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A to B for one additional carload a day equals the sum of the loading, A to B.lravcl-
unloading. and B to A return travel costs. The marginal cost from B to A for one
additional carload a day equals the sum of the loading and unloading costs only. Th?
optimal routing is achieved by arranging routes so that the sum of the marginal costs
is minimized. :

Significant assumptions made by both Hitchcock and Koopmans, which have lf“'
portance in the solid waste problem, concern demand, supply. and costs. Demand for
a commodity at each demand point was assumed to be known and constant, altho-
ugh in practice, it is a variable, distributed about some mean value. The constant de-
mand assumption for the general distribution problem is an approximation mad(f by
letting the means of the demands of each demand point represent the known, ll)de
demand. The accuracy of the resulting solution is dependent upon the dislribuFlOn
around the mean of the actual values of the demand. If the distribution shows little
significant variation from the mean, then the assumption of known, fixed demand
yields plausible results. Yet, on the other hand, if the disbritution is spread significan-
tly about the mean, then assuming the value of the mean as a fixed demand ma}’
yield inaccurate results, particularly if the distribution is other than a normal dl?‘“‘
bution. (For the urban solid waste problem, it has been found that the quantity of ré—
fuse generated at each demand point is variable and distributed geometrically)". This
solution’s unacceptability lies in the costs of inadequate and excessive capacities. For
example, if a vehicle fails to complete a scheduled refuse collection route because of
insufficient capacity, then the cost of such failure is reflected in the extra trip t0 fhe
disposal site necessary to complete the assigned route, the overtime wages which
may accrue. and the influence upon other routes assigned to the same vehicle. The
amount of time spent traveling to and from the disposal site represents a significant
portion of the collection costs, and so the fewer disposal trip made, the lower the col-
lections costs will be. A consideration of a technique for handling the problem of i
riable demand will be discussed later. What is of importance at this point is recogni-
tion that the demand is a solid waste problem is not constant and known, and that
therefore the solution techniques of Hitchcock and Koopmans need to be applied
with caution.

Several studies have discovered that the quantity and composition of solid waste
has cyclical variations over time'. Quon found that variations in the amount of time
necessary to service each demand point had a relatively important effect on the ove-
rall efficiency of collection'*. (The time necessary to service a demand point depends
upon the amount of refuse at that demand point, so variations in the quantity of e

13. Unpublished letter from William S. Galler, Associate Professor of Civil Engineering, North C&
rolina State University at Raleigh, March 16, 1971.

14. Hickman. H.L. Jr.. “Studies of Characteristics of Municipal and Residential Solid Waste s Engi-
neering Foundation Research Conference, Proceedings, Conterence Reprint Number F-3. July. 1967:

15. Quon. op. cit., Efficiency has units man min / ton.
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fuse generated will have a significant effect upon the overall collection efficiency).
Recent studies, notably those of Quon'® and Galler'” make use of this fact. If a fore-
cast of seasonal variations of refuse generation could be made with reasonable confi-
dence, then route assignments could be adjusted by applying Hitchcock’s or Koop-
mans’ techniques to several sets of demands over an entire cycle. Hance the
Hitchcock-Koopmans solutions, although not suitable for the solid waste collection
problem as it stands, could be utilized if the proper modifications were made, and if
such modifications provided models with constant demand.

The second significant assumption is that each distrubution point has a known,
fixed supply of the commodity in question. For the ensuing discussion, let the de-
mand points correspond to the points of refuse generation and the supply points to
the disposal sites. (The particular labels used are merely a convention). It is true that
each disposal site has a known maximum capacity, and in this sense a fixed supply.
Unless each disposal site is operating at maximum capacity, however, the “‘supply™
at each site is unknown, bounded by zero at the lower extreme and its capacity at
the upper. It would be unwise to have only enough disposal capacity to enable all di-
sposal sites to operate at full capacity at all times, since any increase in the amount
of solid waste generated would overload such a system. Therefore, a reasonable
assumption to make would be that disposal sites operate sufficiently below capacity
to be able to handle seasonal fluctuations, hence causing the value of the supply to
be unknown, in contrast to the known supply assumption.

The third assumption, central to Hitchcock’s study, was that the unit costs of
transporting the commodity between any two points of the system were known and
constants Most studies done on the distribution problem made this same assumption:
that costs were linearly dependent upon the number of number of miles driven. On e
exception was Koopmans, who recognized that the marginal cost of shipping one ad-
ditional unit from point A to point B within a system was dependent upon the net
flow of commodities between these points as well as being linearly related to the di-
stance between them. Koopmans' marginal cost concept requires flow in both dire-
ctions, from A to B, and from B to A. In the solid waste problem, if B is the dispo-
sal site and A is the demand point there would be no flow from B to A, for no one
would wish refuse to be delivered to his home. Since flow does not exist in both dire-
ctions, Koopmans' marginal cost concept is inappropriate here.

Another significant factor affecting the accuracy of the linear dependence assum-
ption is that of traffic congestion. It is suggested that congestion may be a significant
parameter of refuse collection costs. Collecting refuse in New York City between,
say, 4 p.m. and 6 p.m. would obviously be more time consuming per unit refuse than
between 2 a.m. and 4 a.m. Accessibility of the refuse containers may be greatly re-

16. Ibid.

17. Galler. W.S.. “Study and Investigation of Solid Waste Disposal, City of RAaleigh. North Caroli-
na”. Engineering Foundation Research Conference, Proceedings, Conference Reprint Number a-7. July
1967.
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duced due to vehicles parked along the roadway or people moving along the §|dc»
walks. and movement of the collection vehicles may be greatly inhibited, CSPL‘C""I!y
movement to and from the disposal site. The collection vehicles themselves mlil.\" also
be a cause of congestion, thus becoming a diseconomy to the community. SlllCc lh:j:
congestion parameter primarily affects the length of time required for collection. an,
thus labor costs. the most significant costs in refuse collection'™ ' Y, are directly ‘TL'
lated to time factors which cause any increase in the time required for collcclfon
simultancously cause increases in total collection costs. Therefore, when cungcsuon‘
becomes a significant parameter in the solid waste problem. costs can no longer be
assumed to be linearly dependent upon the miles driven, but must reflect the non-
uniform effect of congestion?'. _

Since the early publications of Hitchcock and Koopmans., some variations on
their techniques have emerged. seeking to decrease the computation time ncccsS‘flf)’
for large problems®’. The same basic assumptions are made, however, sO th 1m-
provement gained lies in the fact that the same results can be obtained much tasllcr-
Tillman was the first to alter one of the basic assumptions when he suggcslchd%’alm‘g
with probabilistic demand?®'. In order to incorporate the concept of probabilistic dc;
mand. he used a twophase procedure — the route development phase has come to be
known as the “savings™ approach (that is, the decision to join two points on a roul.C
based upon the “savings™ of distance rendered by such joining). For example, const®
der the case shown in Figure (1), where T, is a distribution point, and P, and pz'are
demand points. The distance from the j" terminal to the ith demand point is given
by d| while intra-demand point distances (e.g., between i and k) are denoted by d. IR¥e
Assuming that initially a vehicle from the terminal is assigned to each demand point.
the total distance traveled, D, is given by:

D= a (d| + d}) )

o . o J . 2 8 . ’ aintenan-
I8. Unpublished memorandum from South District Maintenance Supervisor to Bill Hap. Mainte
ce Supervisor. Yellowstone National Park. December 9. 1970.

19. Quon. op. cit.

20. Paul. LL.. and Wilson. D.G.. “Reviewing the Prospects for Automating Urban Solid Waste Co
lections™. ASME paper 69-WA/PID 21. )
21. This is true in light of the |

. At ere
act that congestion is not uniform throughout the model. and th
fore cannot exert a line

: - b ‘ g s inearity
ar influence. For a more complete discussion of the errors due o lmm' ‘;l
. 5 g $ o . . " g Cd
assumptions. see: Baumol. W.J.. and Bushnell. R.C.. “Error Produced by Linearization in Mathemati
Programming”™. Econometrica, Vol. 35. No. 3-4. July - October, 1967.

22. As examples. see: Minty. G.J.. “A Varieant on the Shortest-Route Problem™. JORSA, Vol. 6-
No 6. 19Y58.

Gleyzal. A.. ~An Algorithm for Solving the Trans
nal Bureau of Standards, Vol. 54. No.
Russell. Edward. J.. “Extension of Dantzi

portation Problem™. Journal of Research of the Nalio:
4. April. 1955, Research Paper 2583. pp. 213-216.

£'s Algorithm to Finding an Initial Near- Optimal Basis for the
Transportation Problem™. Operations Research, Vol. 17. No. 1. Jan. - Feb. 196Y. pp. 187191

23. Tillman. op. cit.
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Ty

FIGURE I Illustration of distances between a distribution point
T, and two demand points Py, Py, and of intra-demand
distance
The “savings™ gained by joining points P, and P, to form the new route T, P, P,
T, are given by:
= I 1
S, =d; +d; —dj (4)

Caution should be exercised, however, for when two demand points close to one
terminal and far from another are joined together, the greatest savings would be
obtained by assigning them to the remoter terminal. Figure (II) illustrates this case.
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FIGURE II: The case of two demand points P, Po, close to one

terminal Tg and far from another Ty, joined together,
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The “savings™ of route T,P,P,T, is given by equation
5a) and the “savings™ of route T,P,P,T, by equation 5b).

s = di + dy — dj5 (5a)
S e el dig (5b)

1 At > T ’-')‘.lhc
Here. the greater savings lead to an erroncous route assignment. Therefore |
. e AR GAE ArE: ralativie 1e clo-
savings equations 3) and 4) are modified so that all distances are relative to tl
ser terminal.

d, - mind;, (|~ mind)) (6a)
sh=d 3 +d g—dy (6b)

Equation 6a. 6b) gives the modifications where j is the terminal imigx and 1 fmd k.
are demand point indices. The notation min d | means to choose the distance lrom'J
to the closest terminal s. The objective then becomes to arrange the routes sO l_h‘“.
the sum of the savings of the routes assigned to each terminal is maximized. Points
considered for joining are those joined to a terminal and not already on the same rf)‘.
ute. The joining of the points must not violate the restrictions of the system. Su?l-]b‘:t
causing a route assignment to be greater than the capacity of the largest available
vehicle. ,

The vehicle assignment phase of Tillman's technique utilizes the concept f" l’rF"
babilistic demand to assign vehicles of various capacities to the routes determined IIT
Phase 1. in such a way that the total expected cost of collection for the giv.cn routes
is minimized. He defines the function G, (L) as the cost of filling a truck prior tO llj;
completion of the scheduled route. and G, (L) as the cost of completing a schedule
route with excess capacity. where L is the sum of the random variables X;, Xp: -~
x,. L N x, . The x, are the loads at the n stops on a scheduled route. The
pmlmbilily‘dcnsil_\ function of L is denoted by h(L) and the minimum expected cost
for route by R*. If the assumption is made that there is enough flexibility in the s¥-

stem to assign a vehicle to a route that has a capacity approximately equal to R. 1.6

C - R. then the expected cost may be expressed as in equation 7).
R

E(cost ~ [ G, (L) h(L)dL + [ G, (L) h (L) dL (@
R

The objective of the vehicle assignment phase of the procedure is to minimize Fhe
expected cost. To begin the solution procedure, the G functions and the distribution
of x, are defined. An expression for the minimum cost may thus be found by
evaluating equation 7). and then solving for various values of R and n. The values of
R which correspond to the minimum expected cost for each n are the R values used
lo assign vehicles to routes obtained in Phase | of the procedure. ‘_

The procedure suggested by Tillman is a “practical method that provides ~good

24, The value off R determined for cach route is the load assigned to the vehicle for that route.
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answers to a rather difficult problem™*. His two primary assumptions seem applica-
ble to the solid waste problem. The first — that enough flexibility exists so that a
vehicle of capacity C can be assigned to a route of load R thus making C approxi-
mately equal R — is self satisfied by the restrictions of the system itself, for the len-
gth of the routes is bounded by the capacity of the larges available vehicle. Thus, the
routes are combined, generating further “savings™ until the capacity restriction comes
into play. The other assumption — that all demand points have the same mean —
may also be applicable to the solid waste collection problem if a modification of the
system under study is made. While the type of distribution at each demand point in
a refuse collection system may be the same, the means of the distribution may not be
equal except in a micro-analysis®. If the demand points have different means, the
points with the larger means may be divided into several points at the same location
(d, — 0) so that the means do become equal. The size of the problem may increase
considerably if the range of the means is great, thus becoming a limiting factor for
the implementation of Tillman's technique. As with the Hitchcock and Koopmans
procedures, the Tillman technique does not take large seasonal fluctuations of the
quantity of the refuse generated into consideration. The distributions could be made
in such a way that these fluctuations are accounted for. but handling the seasonal
fluctuations as outlined previously woyld clearly result in a more accurate solution.
None of the techniques discussed above provide insight into the effect of alterations
upon the system under study.

With the advent of high-speed computers and the development of simulation te-
chniques. the effects of varying parameters could be gauged. The simulation techni-
ques to not provide optimal solutions per se, although by proper definition, an opti-
mal solution could be found. If the optimal solution were defined to be the “best™
solution of 100 random trials, for example, clearly an optimal solution could be
obtained, since although 100 trials may not be total enumeration, the probability of
at least a pear - optimal solution being among them is relatively high*’. Quon noted
that the value of simulation lay not in its optimizing capabilities, but in its ability to
provide information about the system at low cost. “The use of the information deve-
loped from a verified simulation program as the basis for an over — all economic
analysis of refuse collection and disposal systems promises a method of optimization
that is cognizant of stochastic variation, is capable of singling out the most signifi-
cant parameters. and can delineate the range of values for each parameter consistent
with the optimal solution™?®.

As more accuracy is demanded of a solution technique, so the amount of known

(9]

5. Tillman. op. cit.

26. Bodner. op. cit., the DOWAR program is an example of a micro-analysis.

27. Len. S.. “Computer Solutions of the Traveling Salesman Problem™. Bell System Technical Jour
nal, Vol. 44. No. 10. p. 2245, 1965.

28. Quon. op. cit., p. 23.
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information necessary to solve the problem is increased. Simulation of a system re
quires extensive knowledge of that system. thus creating large data collection cos.lh-
As with all techniques used in operations research, the marginal cost of any cxlru.ll?‘
formation must be weighted against the marginal utility of that information. This
should be kept in mind when choosing a technique for application to a specific pro
blem.

Scction 2 outlined the development of a hybrid optimization technique designed
for application to a particular aspect of the solid waste problem. the high seasondl

variation ol the quantity of refuse generated at cach demand point.

Section 2

The Algorithm developed in this Section applies to solid waste collection Pf”
blems with a high variability of quantities ol refuse generated at cach demand P‘_’“"
over time. Such a situation occurs. for example, in recreational areas where there 15 d
seasonal variation in the number of visitors. (The amount of refuse generated at @
summer resort during February would be significantly less than the amount genera
ted during the summer). Indeed. within the season itself. there may be rapid change
in the amounts of refuse generated — Figure (111) shows the quantity of refuse b’c“‘f
rated in Yellowstone National Park over the period of one year'. The rapid and o
gnificant change during the summer months is the type of variability for w hich this
algorithm is designed.

Techniques discussed heretofore have been applicable solely to a static silumioﬂ_
where cither the quantities of refuse were assumed to be constant. or the means ol
the related distributions were considered to be constant. The case of high \'uriuhilil)'-_
however. requires not only defining the optimal routing. but also the scheduling ol
several optimal routing plans. each with a different number of vehicles. reflecting the
rapid changes in the quantity of refuse generated within the system over the season.
That several plans arc necessary may be seen by examining Figure 111 — the number
ol vehicles required 1o service Yellowstone Park during February is obviously difte
rent from the number required in July. :

The algorithm is based on the relationship between the feasible shortrun average
cost (FSAC) curve and the ideal shortrun average cost (ISAC) curve. where the
FSAC curve contains those points physically attainable by the collection firm in the
short run. General economic theory suggests that a firm is capable of operating at
the minimum point of its FSAC curve by adjusting its mix of labor. capital. and
output over time. but in the solid waste problem. the output corresponds to the r¢

I. Unpublished Report. =Average Monthly Refuse Collection Main Areas”™. National Park Service.
Ycllowstone National Park. 1969,
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fuse generated in the system and is, therefore, exogenous 1o the collection firm. Only
labor and capital can therefore be adjusted to minimize costs, as the quantity ol re-
fuse varies. And any change in the amount of capital or labor utilized by the firm 15

considered a shift from one collection plan to another. A plan is defined as the set of

optimal assignments of n vehicles to collection routes, where n is a fixed number
characteristic of the plan. Since each plan has a corresponding SAC* curve (PSAC).
a change of the mix of labor and capital is reflected by a shift from one PSAC curve
to another. The FSAC curve of the firm is the lower portion of the PSAC cu'f\'cS
corresponding to the various plans (Figure 1V). The objective of this algorithm 1s 10
provide a means for determing the sequence of plans, so that the related PSAC curve
shifts would follow the firm's FSAC curve.

PSAC,

COST
PER
UNIT

FIGURE 1V.

* Short run average cost
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The technique is to locate the intersections of the PSAC curves. To find the
points of intersection. the solid waste system is simulated over the season while two
successive plans are evaluated for the optimal routing of vehicles and the expected
cost of operation. A plan is considered to be operating in tis least-cost configuration
if two conditions are met: (1) all vehicles (with workers) are engaged in productive
activity for the entire workday: (2) the refuse collection requirements of the system
are satisfied within the workday. Such a plan would therefore be operating at the mi-
nimum point of its PSAC curve, and would define the optimal quantity of refuse for
that plan’s operation. denoted by Q for plan b in Figure (1V). Clearly, for plan b,
any qyantity of refuse which is greater than Q ., say Qu ., would require vehicle
utilization for a period of time longer than the normal work day in order to satisfy
collection requirements. This extra utilization has a higher marginal cost than the
optimal point, 1, as is seen in the Figure (1V). If the mix of labor and vehicle capaci-
ties were infinitely divisible. then there would be a plan whose corresponding PSAC
curve would be at a minimum at Q y . The ideal shortrun average cost (ISAC) curve
of the firm would be an evelope enclosing all of these theoretical PSAC curves corre-
sponding to the infinitely divisible plans. The ISAC would form a smooth curve tan-
gental to the discrete PSAC curves previously discussed (see Figure V).
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UNIT
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FIGURE V.
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The difference between the expected cost of plan b at Q y and the ISAC for Q.-“
is termed the expected cost of insufficient capacity of plan b, 1C, . This cost fs
attributed to insufficient capacity for the plan capacity, and the PC of plan b at fhls
point would be less than the PC of the ideal plan. Similarly, for a quantity of rclusc‘
less than Q , say O , there would be an expected cost of excessive capacity of
plan b, EC, . The intersections of any two successive plans correspond o the
situation where the IC of one plan equals the EC of the next. This alogrithm takes
advantage of this fact to determine the time at which to change from one plan to the
other?.

For a given plan, the expected cost of insufficient capacity is denoted by G, (Q)
and the expected cost of excess capacity by G, (Q). This is an extension of Tillman's
technique for assigning vehicles to routes, to a method of assigning plans to time pe”
riods. The probability density function of Q is denoted by h(Q). Whereas Tillmjd"
evaluated the sum of the expected costs for each route, this algorithm calls only for
the computation of the IC for one plan and the EC of the other, thus the G, Q)
and the G, (Q), and the h (Q) are related to the plan capacity, PC, rather than the
route capacity. The expected costs may be expressed by:

PC
IC = [i G, (Q) hQXQ W
LPC
EC - [, G,(Q h(Q) dQ &
Using Tillman's example, assume G, (Q) and G, (Q) to be quadratic functions”:
G, (Q = 10 (PC — Q)* = 10 (PC) + 10Q* — 20(PC) (Q) (i;
G, (Q) - 30 (Q - PC)* = 30q> + 30 (PC) — 60 (PC) (Q) (

The quantity of refuse generated in the system at any time is assumed to be di-
stributed normally, with mean p, .

Following the procedure outlined by Tillman, equations 1 and 2 may be expen”
ded to the following form:

IC = 10 (PC)* P (PC + 1, Q) + (10 — 20PC) (Q) P (PC, Q) + 10Q*P (PC —I.

Q) 9
EC — (30-60PC) Q [1-P(PC, Q)| + 30Q [1-P (PC—1, Q)| + 30(PC) [1-P (PC::,;
Q).

These expressions are evaluated for two successive plans as the system is simula-
ted, until the expected costs are equal. At this point, the time is noted, the next plan
determined, and the simulation continued. When the entire season has been simula-

2. It should be noted that if the cost of conversion from one plan to another becomes significant 1€
lative to the expected costs, the shift point will be defined by the relationship, IC = EC + CC. where
CC is the cost of conversion.

3. Tillman, F.A., “The Multiterminal Delivery Problem with Probabilistic Demands. “Transportd:
tion Science, Vol. 3 NO. 3. August. 1969.
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ted. a schedule of collection plans will have generated, as well as the optimal routing
for each plan.

The algorithm proceeds, as follows. Information about the solid waste system is
input. including locations of disposal sites, locations of demand points, refuse genera-
tion functions for each demand point, capacities of the vehicles, and mileage among
points of the system. Each demand point (point of refuse generation) is assigned to
the nearest terminal, and the quantities of refuse at each demand point simulated for
the first time period. The optimal collection routes are then determined using the
“savings™ approach. The IC for this plan is computed and compared with the EC of
the next plan. If the IC is significantly less than the EC, the simulation proceeds to
the next time period. If the IC does not significantly differ from the EC, the succee-
ding plan is adopted, the time period noted, and the simulation continued. When the
IC is greater than the EC, it is an indication that the intersection point has been pas-
sed. Therefore, if the IC is found to be significantly greater than the EC, the time
flow is reduced and reversed to return to the point of intersection. Figure (VI) pre-
sents the flow of the algorithm, which is iterated over the entire season.

Subroutine DIST computes the terminal matrix, for each terminal. The first
column is reserved for the quantities of refuse at each demand point computed by
REFUSE. The second column gives the distance from the terminal to each demand
point. The third column gives the adjusted terminal distances according to equation
(6a) of Chapter II, repeated here for convenience:

dj= msin d}—(dj— msin ds)

The rest of the terminal matrix is a square array of the order r, where r is the
numbgr of demand points. The portion below the diagonal gives the mileages among
the demand points. The portion above the diagonal gives the savings in joining any
two points, such savings being computed from equation 6b) of Section 1, repeated

here for convenience:

3 -i -i
SJ‘;\:d )+dk—djk

Subroutine REFUSE computes the amount of solid waste generated at each de-
mand point for the current time period. This information is then installed as the first
column of the terminal matrices. Subroutine COMBO scans the savings portion of
the terminal matrices for the largest possible savings, and when it is located, the re-
strictions of the system are checked for violation, assuming the two points are joined.
If none occurs, the points are joined and the scanning is continued until the next lar-
gest savings is located. If the restrictions are violated this time, the points are not joi-
ned, and are never again considered for joining. This method of developing the colle-
ction routes is the “savings™ approach discussed in Section 1. Subroutine COSTS
computes the IC and the EC for the current plan and the next plan respectively,
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using equations 5 and 6 developed in this chapter.

The primary drawback of this algorithm is the large amount of data required for
its implementation. The refuse generation functions themselves need careful analysis
in order to derive significant equations. The accuracy of this algorithm depends upon
the accuracy of the input data, and this being the case, the less reliable the refuse ge-
neration functions become. the less rekiable the results of the algorithm will be. The
use of this algorithm. as any operations research method. must therefore be evalua-
ted in terms of the data collection cost, that is. the marginal cost of additional data
must be compared to the marginal utility of extra information that would be derived
from the data. Simulation. accompanied by its large data collection cost, was chosen
or use in this algorithm because. as a practical technique, it has proven to be an effe-
ctive. inexpensive method of analyzing compex systems. Theorists are often criticized
for making numerous simplifying assumptions, so many that the technique finally de-
rived cannot be applied to a practical problem. The number of simplifying assum-
ptions that produce errors in the results of an applied theoretical technique are re-
duced by simulations. thereby improving the reliability of the solution obtained. By
blending the relevant aspects of both theoretical and practical methods. this hybrid
optimization technique attempts to bridge the gap between theory and practice with a
viable technique which yields significant results for a given problem.

APPENDIX 1

A Numerical Example

Assume a situation of two terminals and seven demand points as illustrated in Fi-
gure (VII)

P,
3 2 5 pB
+
Pq
Tl 4, TZ
e L F‘8
5
Vi =
p 1 7
1 3p, Pq7

Figure V11

Let the loads on a route with n stops have a poisson distribution with n u = 3n.
The functions G, (L), G, (L) are assumed to be
G (L) ="30 (L-R)?
G, (L) = 10 (R-LY

Il
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Then

R x
Min E(cost) = Min {\ 30 (L-R)* P (L,n ) + N 10 (R-L)* P (L, n p} -

R 1220 Rl R

R
Min {30\ L2P (L.n p) + 30 R2N" P (L, n p) — 60RN LP (L, n p) +
( )

0 0

# 10R? N"LP (Lynp)} + 10 N L2P(L,n p) — 20R N\ LP (L, n p)l
Kol i Kl

Letting p = 3, P (L, n p) = P (R, n p) and collecting terms, we obtain

K b
Min E(cost) — Min {(90-180R) - n [1-P (R, 3n)] + 270n? [1-P (R-1, 3n)| + 30R* [1-
P(R+1-3n)) + 10-R2P (R+1, 3n) + (30-60R) nP (R, 3n) + 90n*P (R-1, 3n).

If this is evaluated for R= 1,2 ... 20 and n ]
are obtained

. .... 6 the following results

R n n n n n ;n’-—’ﬂ
I 2 3 4 5 g watllil
792.98 1329.9 2090.0 3070.0
! 70.9 320.3
2 46.9* 220.5 580.1 1119.9 1840.0 2740.0
3 55.37 152.6 450.18 930.1 1590.3 2430
4 105.248 | 108.8 320.93 760.08 | 1359.0 2140
5 93.8* 188.9 610.35 | 1149.0 1869.2
6 113.5 150.9 481.272 960.3 1620.2
7 174.2 143.7* 373.278 | 790.6 1390.1
8 171.8 288. 1 641.1 1179.8
9 241.12 228.2 513.5 990.3
10 195.4 406.8 821.5
I 195.1* 325.2 672.8
12 230.784 | 2688 546.5
13 242.1* 442.44
14 247.8 363.9
15 311.6
16 288.9*
17 301.3
18
19
20 8760.0 6060.0 3900.6 2278.5 1183.9 570

The figures indicated by asterisks give the value of R minimizing the cost for the
corresponding u.
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