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Preface

Given an econometric model with two or more variables in the explanatory list being linearly depen-
dent, then the coefficients of the model cannot be estimated through using the standard econometric
methods. :

Many techniques have been developed to face this problem of mulicollinearity, but all of them call
for a radical reform of the initial data set. Besides most of these techniques are rather based on heuristic
consideration.

In this paper we develop a procedure for obtaining efficient estimators of the parameters when we
have to work with a data set which is characterized even by extreme multicollinearity.

According to this procedure the parameter vector can be estimated by avoiding the explicit imposi-
tion of additional linear resitctions which call for a priori information.

Given the linear model

Y=Xb+u (1)

the estimator vector b is obtained by minimizing (least-squares method) the scalar
function

S=IY - Ri2=8§ = IY — X6i? (2)
>8S=YY-26XY + b X X6 3)

(primes denote transposition)
The minimization of (3) with respect to b yields

b= XXXy )
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For the solution to be unique, (3) must be strict convex. This implies that the
Hessian matrix of (3) must be positive definite.! It is very easy to show that the Hes
sian matrix under consideration has the form

H = 2X X (5)

For the matrix (X" X) to be positive definite it is necessary that matrix X to have
full column rank. Thus the inverse of X X in (4) exists.

A serious problem arises (known as multicollinearity in rconometric literature) if
the full column rank condition of X is not satisfied.

It is the purpose of this paper to develop a procedure for obtaining the estimator
vector b* regardless of the column rank of matrix X.

Denoting the rank of the latter matrix by r(X) it will be shown that if X, which is
defined on E™ x EM, has r(X) = n, then 6* = B, if 1 < r(X) < n, then the obtained
solution is unique in the sence that b* has least norm? and minimizes the sum of
squares

1Y — X6* 2 (6)
Given a non-singular square matrix A it is known that A—! satisfies the
equations:
AATTA = A AL AAT = AL (A1) - = 4

(AAly = (A TAy = A TA

If A is singular and not necessarily square it is possible to compute a matrix Z
(known as generalized inverse and denoted by Z = A™ ) which satisfies the above e-
quations, i.e.
AAT A= A, AT AAT = AT, (AT) T = A,
(AT A) = ATA, (AAT) = AAT

If A is square and symmetric then ATA = AAT.

If A is not square (m s n) but has full row or column rank then A* is the right
or left inverse of A, ie.

r(A) = m = AA" =1,
A) =n= A*A =], @)

If A is square (n x n) with r(A) = n, it is easy to verify from the above identities
that A=l = A+, '
The main point regarding the generalized inverse, is that it always exists and is
unique (Greville, 1960).
~To show that if r(X) = n then b* = b, we consider the relations (2), (6) and (7).

(1) All pricipal minors to be greater than zero.

(2) Throughout this paper the Euclidean norm is considered.
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The direct minimization of (6) using the generalized inverse, yields the optimally
estimated vector b* defined by

b* = Xty (8)
Given that X* X = I, since r(X) = n, it is implied that
Xt =XX!'x ©)
so that
b* = X' X)! XY (10)
Eq. (9) can also be written as

Xt=XX)PrX =2b=XX)XY=056
since (X' X)~! = (X' X)*.

This is important from the computational point of view, since (X' X)* can be
computed much easier than X*, given the dimension and the properties of the former
matrix.

The case of interest arises when 1 < r(X) < n, which implies that matrix (X" X)
is singular.

In the appendix we develop the procedure for computing the generalized inverse
of a singular matrix.

In such singular cases (X* X) # I, but the products (X* X) = (X' X)* (X" X)
have the properties of an idempotent matrix with r(X* X) = r(X). In addition it is
easy to verify that

XXPrXX=XX XX (11)

XXX)PFrXX) =XXtX =X (12)

'In what follows we establish the properties of the optimally estimated vector
b* = XtY = (X X)*X'Y (13)
Substitution of eq. (1) into (13) for Y yields

b* = X* (Xb + u) = X*Xb + X+ u
and
E(b*) = X* Xb (since E(u) = 0) (14)

Considering the norm of eq. (14) we have

IE(®*) I < IX* XI bl = IEG*)I2 < IX* X2 bl 2 (15)
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Since (X* X) is an idempotent matrix it is implied that
IX+ X2 = tr(X* X) = r(X+ X) = r(X)
Even if r(X) = 1, E(6*) has least norm as it is verified from (15).

In general, for any b, either IY — Xbl > Y — X6* Il or IY — Xbll = I'Y — Xb*I
and bl > 6%, which implies that eq. (8) gives the minimal norm solution (see ap-
pendix).

To prove that b* is the best unbiased estimator of b it is assumed that there ex-
ists another linear estimator denoted by

b =AY = A(Xb + u) (16)
Hence

E(b) = AE(Y) = AXb amn

Matrix A is defined on E" x E™.
For the vector b to be an unbiased estimator of b it is required that

AX =1 (18)
so that
E(b) = b (19)
It is implied that if eq. (19) holds, then it must also be true that
XE(b) = Xb (20)

In other words for the case at hand the condition AX = I changes to
XAX = X 21

Although it will be shown later that this is the case, we assume at this point that
the product XA is a symmetric matrix so that XA = A" X', Hence eq. (21) can be
written as

AX X=X (22)
The variance - converiance matrix of b, denoted by I§ is

E {(b — E(®)) (b — E(b)) }
E {(AY — AE(Y)) (AY — AE(Y)) '}
E {A(Y — E(Y)) (A(Y — E(Y)) |
= E {Auv" A"} = AE@uu) A’
= Ac?lA" = o? AA’ (23)
To solve the problem (see the appendix for details)
min clAA’
s.t.
AX X=X

Zp

I
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we form the vector - valued fanction (Lagrangean)
L = diag [c? A" A] + diag{(X — A" X X)A’] (24)

Where A, the matrix of Lagrange multipliers, is defined on E™ x E".
The resulting normal equations from (24) are of the form:

20t A" = AX' X (25)
AX X=X (26)
From eq. (25) we get:

1

A= —AX'X 27

S (27)
1

and A= X XA (27a)
20?

Eq. (27) is inserted into eq. (26) to yield
1
20?
Eq. (28) holds iff A = 20? X(X" X)* (X" X)*. Hence eq. (28) can be written as

AX'XX'X=X= AX'XX' X =202 X (28)

XX X)PFFXXPrPXX)XX)=X (29)

Since the matrices in brackets are symmetric and due to the fact that
(X' X) * (X" X) is an idempotent matrix, the left-side of eq. (29) reduces to

XXXN"XXN XXN"XX)=XXXPH(XX)=XX*'X =X

Since A = 262 X(X'X)*(X'X)* it is implied that A" = 26* (X' X)* -
(X' X) * X" which is inserted into eq. (27a) to yield ]

2
A =

= X)X XND"X X)X =XX)*X=X" (30)
Hence, the assumption made earlier is entirely justified, since XX* =
XX X)* X so that XX* = (X*) X"
By inserting the value of A, in eq. (30), into eq. (16) we get
b=X*Y = b*
which indicates that the minimum variance property is also satisfied.
The direct substitution of the value of A and A" into eq. (23) yields
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£p = c2AA = a2 X F(X*)
- XXX XXX
=X XXX (X X+
=GR K T

The estimator of the scalar variance o? is obtained according to the known way,
i

i* = Y — Xb*

= Xb + u — XX'Y

=Xb +u—-—XXX)*"X'Y

=Xb +u— XX X)"X(Xb + u

=Xb +u—XXX)TX Xb — X(XX)"X u

=Xb +u—Xb—- X(XX)"Xu, since X(XX)" XX =X
and
i* = u — X(X"'X)* Xu

= {In — XX X)*X jlu={I - XX*}u
Hence

*i* = uMu = tr'Mu u)

=

where M = {I — XX* | is an idempotent matrix and tr(A) denotes the trace of
matrix A.
Finally it is:

E@* 4*) = tr[ME@ u') | = o?tr(M), since E(u u) = ol

and

E@* d*) = oltr(I,) — o2r(X(X' X)+* X)
o’m — ctr(X (X' X) * X" X)
om — (X' X)+* X X)

= o¥(m — (X))

Il

since tr( (X' X)* X' X) = (X' X)* X' X) = r(X)
If the estimator of o? is denoted by S? then it is determined from:
a* 0

82 = oo so that E(§8?) = o?
m—r

We have applied the developed procedure using a set of data characterized by

extreme multicollinearity. The data used and the results obtained are ilustrated in the
table which follows.
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The model: Y; = b; + b, X,, + b, X;, + uj

i Yi X, Xy = 2X, € 0 *
1 18 4 8 21.5883 —3.5883
2 19 3 6 18.8240 0.1760
3 25 5 10 24.2942 07058
4 28 6 12 27.0001 40.9999
5 33 10 20 37.8237 —4.8237
6 39 8 16 32.4119 6.5881

Ti* =0.0578, i * 2= 81.07597

SST =330, SSR =248.924

R? =0.754 §? = 20.26899

The estimated model is:

% =107647 + 0541144 X, + 108238 X,
(4.98392)  (0.154389) (0.308846)
(2.15989)  (3.50507) (3.50459)

The figures in brackets are standrad errors of coefficients
and the values of the computed t, respectively.

In the econometric literature it is suggested that the above model, i.e.

Yi =B, + file + By (2X;) + y
to be written as

Yi=8 + B, +2B,) X +i5=>Yi=8 +vX; +y (31

It is also mentioned that although we can obtain the estimators for B, and y = f,
+ B, , “there is no way to estimate the coefficients B, and B, separately” (Christou,
1978, p. 282).

From the given set of data, ¥ is found to be ¥ = 2.7059. Recalling that

¥=8, + 2B (32)

it can be easily seen that the estimated coefficients % and P, according to the
procedure developed in this paper, satisfy equation (32), ie. ¥ = B% + 2B %.
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Another point of interest is that V(y) = S‘? has found to be (form eq. (
V#) = 0.596

Since ¥ = a,f% + a,f% (where ¢, = 1 and o, = 2)
it is recalled that '

k)
V@) = Y alivqs*inz}?‘_ oia; C(B %, B %) =0.59
<]

=2

since C(B%, B%) = 0.047693.

Hence the estimated vector b* has the following properties:
— 1t has least norm
— Minintizes 6* @ * = 4 @ which refer to the models:

YT=PB7+B5X +BY X + 7Y
Yi =B, + B, + 2B,) X, + G since X, = 2X,
(it is also noted that Y * = Y;).
— Its elements have minimum variances which satisfy eq. (33).

Furthermore and contrary to what is mentioned in the econometric literature
Theil, 1970, p. 148), the mean vector of the dependent variables is unique, !

E(Y) = XE(b*) = Xb

since we have shown that XE®b *) = Xb
The above features, together with some additional ones mentioned in the text
the main outcomes of this paper.

APPENDIX

On the computation of the generalized inverse of a singular symmetric ma
It it assumed that the generalized inverse of matrix
j E

A:[24

] is required.

Step 1

Compute the egenvalues and the asociated eigenvectors of A"A = AA'".
Denoting by R the diagonal matrix of eigenvalues and by V the matrix of
associated eigenvectors we get for the above example
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Ty o V= [; _iz]

It is required that matrix V to be orthonormalized. The conditions to be satisfied

are: <V, V;> = 1, <V, V,> ='1 and <V,, V,> = 0.

The orthonormalized V matrix is

1 2
V5 Vs

¥ =
2 —1
V5 Vs

Step 2

Define a diagonal matrix F with elements f; = f;, which are the non-negative

square roots of the eigenvalues of A’ A. If the rank of A is r < n, then

£ S s 3

and
fr+l = fr+2 = ceeuees fn =0

For the above example matrix F has the form
5 0
F =

Now matrix A can be written as
A = VFV’
which is called the singular value decomposition of A.

Step 3

Define the diagonal matrix F* with elements

f‘{i =f*%* = 1/f; for i<r
and
f* = 0 for i>r

F * for the case at hand is
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Step 4

Determine the generalized inverse A™ of the singular matrix A from
At = VF*V’
For the above example AT is

P [ 0.04 0.08]
0.08 0.16

and satisfies all the equations mentioned in the text.
we have developed a routine which is available at *he University of Thessaloniki
Computer Centre, for computing the generalized inverse of any real matrix.
At this point it is constractive to recall that for a real symmetric (n x n) matrix:
— all eigenvalues and the corresponding eigenvectors are real
— two eigenvectors corresponding to distinct eigenvalues are orthogonal
— the eigenvectors form a basis for E"
— there exists at least one orghonormal set of eigenvectors which provides a basis
for E"

A

On the minimization of (6?AA" | A" X X = X).

Assuming that for i=1, 2,...n, the vectors ,a_; € E™ are the n rows of matrix A
and the vectors f_j € E" are the m columns (j=1, 2,..,m) of A, then in order to

minimize (6 AA" | A"X X = X) we require

either % | 2 12 to be minimum, for i=1, 2.....,n

or 2
=)

? to be minimum, for j=1, 2...,m
subject to the given set of constraints.

For the first case the lagrangean (vector-valued function) will be

L = (diag{o? AA'}) + (diag{A"(X—A" X' X)|)

The notation diag (Z) denotes that the diagonal elements of the square matrix Z
are only considered.
A, the matrix of lagrange multipliers, is defined on E™ x E". In order to derive
the analytical partial derivatives of each |; with respect to the components of each
A | all the n columns of the row-vector (diag{A” (X—A’ X" X) } )" must be con-
sidered.

For the second case, the Lagrangean will be

L = diaglo? AA'} + diag{ (X—A" X X)A'}
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The column-vectors. in the above specification are m-dimensional. In this case,
the gradient of each I; with respect to each c:- (i.e. V ac—j lj) is determined from
the corresponding jt" row of the right-side vectors.

In both cases the resulting normal equations will be of the form

202 A" = AX' X
AXX =X

The property of minimal norm

We want to minimize
Jp = IIY — Xbi? (34)

given that the real matrix X is defined on E™ x E" (m> n). If (X) < n the
minimizing b is not usually unique unless one imposes additional restrictions such
as the condition that IIbll is also minimal.

The vector b* given by

b* = X*Yor b* = (X X)*X'Y (35)

is the one with minimum norm, as it will be shown in what follows.
Denoting X' X by D we can write

b==56 +b
where
b, € R(D) (the range space of D)

b, € N(D) (the null space of D)
Since D is symetric, R(D) and N(D) are orthogonal, so that
12 = 16,02 + 15,12 (36)

To derive (35) and to prove the minimal norm property we expand (34),
assuming that r(X) = n.
Thus,

Jp=YY—-2XY + bDb
= 0'Y —2Y XD!X'Y + YXD! DD-'X'Y (since 6 = b)
=YY -2YXDIXY + YXD!X'Y
YY-YXDIXY
(Y, I-XD~! X")Y)
= ¥l %g_xp-1 x)

where (a, ¢) denotes the mner product, ie a'¢
Considering the scalar function
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J=1b-D*XYl?p + IYIl Z(I'—XD+X') - 2(X'Y, (I-D*D) 5) 37)

and expanding it, one obtaines [recalling that D*DD* = D* and (D* ) = D" since
D is symmetric]

J=b6Db—2YXD*Db + YXD*X Y+ YY—-YXD+*XY - 2Y Xb +
2Y' XD+ Db

and
J=0bDb—2YXb+ YY=J

It is noted that the term b — D * X YIl 2p in (37) never becomes negative and it

vanishes when b = b *.
Since J = Jb we consider (37), noting that

(1-D+*D)b = b, + b, — D*D (6, + b,)

=t o b - &
= b, since D* D is restricted to. R(D).

For the same reason, anél due to the orthogonality condition, the first term of the
right-side of (37) becomes
1B —D*XYIp=1b -—D*XYIp
Hence, (34) can be written
Jp=1b, - D*X' YIp + I¥YI¥—xp+Xx) — 24X Y, b,) (38)
The first term in (38) is minimized, as it has been mentioned above, by choosing
b, =D*X'Y
In view of eq. (36) and from the requirement of the minimal norm of b, we have
b =0 (39

Hence, b = D* X' Y = b*
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