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1. Introduction

A number of alternative methods can be employed to estimate the parameters in
a simultaneous equations model. These methods can be classified into two main
catergories: the single-equation or limited information and the full information one.
The methods of the first category utilize only the a priori information on restrictions,
which apply to any particular structural equation. The full information methods on
the other hand are more flexible in the sense that they can be adapted to use infor-
mation relating to other structural equations as well. The full information maximum
likelihood method (FIML) belongs to the second category.

The FIML method has a number of desirable properties like consistency and
asymptotic efficiency with a variance equal to the lower bound of the Grammer-Rao
inequality provided that the disturbances are normally distributed. The FIML es-
timates are best asymptotic under conditions including complete identification, stabili-
ty and regularity (see Sargan (28) ). In the case where all equations of a model are
just-identified the maximum likelihood estimates can be obtained either directly from
the likelihood estimators corresponding to the parameters of a structural model or in-
directly from ‘the maximum likelihood of its reduced from. However, for simplicity
we can apply the inderect least-squares method to obtain FIML estimators of the
parameters with all the desirable properties. If any equation of a model is over-
identified, then none of these methods can be used. In this paper the problems of
deriving FIML estimators are discussed, when the simultaneous equations model is
over-identified. In addition to this, a critical review of literature is presented related
to derivation difficulties and with possible ways to overcome them. Finally in a con-
cluding section. the disadvantages of the FIML method are summarized and hints
for further research are suggested.
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2. The FIML estimator

Consider the structural linear form for all K jointly dependent variables of the
model.

YI' + XB + U=0 . (1)
and U~N(O, ® x1I), EUU=® x 1. E(X'U)=0, r(X)=M (2)

where Y is a (TxK) matrix of sample observations of the jointly dependent variables,
I" is a (KxK) non-singular matrix of their coefficient. X is a (TxM) matrix of
predetermined variables, B is a (M xK) matrix of their coefficients and U is a (TxK)
matrix of disturbances. It is assumed that the variance-covariance matrix ® (K xK)
is non-singular'. positive definite. The relations (2) mean that, for any time t, the
joint distribution of the error terms of the system is normal with mean zero and
covariance ®. The error terms, which are mutually independent and identically dis-
tributed as a non-singular K-variate normal distribution, may be contemporaneously
correlated but are intertemporally uncorrelated. They also imply that the error terms
are uncorrelated with the predeterminated variables of the system, and that no linear
dependence exists among the predetermined variables; and the second-order moment
matrices of the current predetermined and endogenous variables are assumed to have
non-singular probability limits. The non-singularity of ® is assumed in order to give
unique solution of current endogenous variables in terms of the predetermined
variables of the system, Also for the computation of FIML estimators it is necessary
to suppose that the number of observations T exceed the number of éxogenouss
variables M and the number of endogenous variables K i.e., all equations satisfy the
rank condition for identification and that the system is stable if lagged endogenous
variables are included as predetermined variables. The derived reduced form of the
system is given by:

Y = XII +V where M= —-BIr'!, v=—-ur-! (3)

The variance-covariance of the reduced form I is also assumed to be non-
singular

E(VV)= T
= E(r-tuur-t)
= -'Euur-!
=[~'@®xDr-! 4)

1. The assumption that @ is nonsingular implies that the system (I) contains no identities. It
means that all identities of the system have been solved out.
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Now, consider the likelihood function corresponding to the reduced form”* equa-
tions

P LIS - T :
£=02n 2 |y ? exp(—_:‘z_ N owIty) (5)
=T :

Since we are interested, in deriving the estimates of the set of structural parameteres,
it is approapriate to express the reduced form parameters matrices V and I in terms
of B, I' and ®.

The likelihood of the typical elements of endogenous variables given the x’s is
provided by

oV

P (y, l Xt ) = P(v ' Xt) (6)

Yi

where [d v | d yi| is the absolute value of the Jacobian of the transformation of the
following matrix

ra\'lt o v v o
oV - B e 0 Ykt
0 vy d vy d vy %)
ST An oo 2 Ykt
Q Vi 0 Vkt d Vki
B Pk o g2y §

the determinant of which is equal to |F[T. So equation (6) can be rewritten as,
P(y||xt) —= ]F]T P(v, ) P(v; )....... P(VT ) (8)
Substituting (1) into (5) and taking (8) into consideration, the joint density of Y, is:

he Lol
£ =i(2n) )R @t
(&)

T
exp. {—5 N T +xB) &' (T +xBy |

2. In the estimation of the reduced form it might be better to avoid total commitment to exactly
restricted reduced form models. Instead we propose to estimate a model, which is only stochastically
dependent on the structural restrictions, a procedure that represents the degree of uncertainty concern-
ing the structural restrictions.
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T T

since |£| = 1|2 |@), |£| ? = 1|7 |®| ? and

7
LN yzotvi = — L (yr+xB) (@' x I) (YT+XB) =

2 = 2

l T
= —— N (Il + xB) @'l +xB)

2

To simplify the notation we will adopt the following equivalences:

A = ( - X

g)
Using this notation we may write the logarithm of the likelihood function

®
L(BL.®:Z) = log £ — Jg_ log(27) + Tlog|T'| — log|cb| f }T 7 AD ' A'Z
or L(B.I'.®:Z) = log(2fc) + Tlog|l'| — iogI(D[ - —12-— tr @' (A'AA)  (10)
T

since Nz AD VA = tr VA ZZA = Tir @ A'AA

Myy Myx
where A :_il__ 77 —

Myy Myx

is the sample variance matrix. Both the determinant of I' and the last term in (10)
are nonlinear functions of the unknown parameters and consequently the
corresponding set of first-order conditions are nonlinear too.

Since no restrictions have been placed on the elements of @, we can maximize® L
with respect to the unknown elements of B, I' and ®. First, we obtain an estimator
for @ in terms of the unknown parameters A. Substituting this maximizing value of

3. Hausman (17. 18) follows a different procedure: he concentrates on the presence of the Jaco-
bian |['| in the likelihood function. which differentiates the simultaneous equations problem from the
Zellner (29) multivariate least squares problem. The reason is that if the Jacobian of the transformation
from V to Y. aV/2Y. were an identity matrix, the FIML estimator would be the generalized least
squares estimators. Then he maximizes the likelihood with respect to A, I’ and £ and sets the partial
derivatives equal to zero.
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@ in (10) we obtain a likelihood function in terms of A and I'. Finally we maximize
this function with respect to A and I'. Proceeding the estimation we take:

R B T e j IR =R it
and ® = A'AA
log |® Hrd ! A'AA
because gl ' =01, Tz —0 ' A'AA O

inserting @ in (10) we obtain the reduced likelihood as a function of B and I’

LB.r:2) = — KT log(2n) + Tiog|r| T 1ogla'aal — KT (12)
it SGHE T .
and L(B.IZ) = — =5 [1+log2m)] + Tlog|l| —5 log |A'AA| (13)

Now equation (13) must be maximized with respect to the unknown parameters
B and I'. It is noted that by differentiating, the estimating equations obtained are
highly non-linear in the unknown parameters. For instance, differentiating with
respect to y; and putting the derivatives equal to zero, we get,

oL o || T 2 |A'AA|

o Il oy 2|AAA[ oy
Since |T| is a function of the coefficient of endogenous variables in all equations, e-
qualizing the derivative to zero, we obtain a system of non-linear equations in the un-

known coefficients.* For solving such non-linear equations, the use of an iterative
method becomes indispensable.

0 (14)

3. Iterative methods

In the literature there are several iterative methods currently available. H. Cher-
noff and N. Divinsky (6) and H. Eisenpress and J. Greenstadt (11) have proposed
suitable algorithms for computing the FIML estimators. Chow (7) presented two
iterative methods of estimation of parameters in a system of simultaneous linear
stochastic equations.® The first iterative approach (direct method) is almost identical

4. For example, for the coefficient ¥V, T/|T| - 2|T| / = Y is the (i, j=1.2..... T) element of T' L,
which involves all elements of I' in a non-linear fashion.

5. A somewhat different interepretation of interdependent equations of a simultaneous
equations model and an iterative method of estimation known as “fix point” is described in E.J.
Mosback and H. Wold (23).
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with the gradient method proposed by Chernoff and Divinsky. The alternative techni-
que is based on Newton's method in which the values of coefficients converge to the
correct values very rapidly, aw compared to the direct method. The drawback of this
method lies not in its effectiveness as an oprimizer, but rather in the excessive cost
required in the calculation of gradient and Hessian matrix. Other methods such as
the Davidon (9). Fletcher-Powell (14) e.t.c. have been developed to reduce these
costs. This can be obtained by providing to the latter algorithms good initial appro-
ximations to the Hessian matrix. An alternative method described as the linearized
maximum likelihood method. which has the same optimal large-sample properties, as
long as the a priori information is correct, has been suggested by T.J. Rothenberg
and C.T. Leenders (27). Although this method is much simpler than the FIML, it is
computationally more troublesome than the three-stage squares method, which has
the same asymptotic properties.

Lyttkens (22). Dhrymes (10), and Brundy and Jorgenson (5) proposed full infor-
mation instrumental variables (FIIV) estimators, which are also consistent and
asymptotically efficient. Hausman (17) showed that the FIIV estimators, are par-
ticular cases of the basic FIML iteration, when it starts with consistent estimate. The
instruments are identical, so that if these estimators are iterated and converge, the
resulting estimate will be the FIML estimate. Hausman proposed an algorithm,
which follows an analogous procedure to the Gauss-Newton algorithm for non-linear
least squares. Since the Gauss-Newton algorithm has proved effective, the algorithm
proposed by Hausman might also be effective in computing the FIML estimates.
This approach vyields the *uphill property”, which ensures an increase in the
likelihood function at each iteration, not only when a certain matrix is positive
definite, but also when the matrix is not positive definite. Although this procedure
has desirable asymptotic properties, its use in actual calculations remains to be
evaluated.

Dagenais (8) developed a unified iterative generalized least squares approach for
computing FIML estimates for both linear and non-linear equations models of
medium size. The proposed algorithm is essentially a gradient method which, at each
iteration, multiplies the gradient by a suitably chosen positive definite matrix. When
applied to linear models, the basic procedure® resembles to that of Hausman (17).

An alternative estimation procedure has been proposed by Powell (26). This
method’ does not require any derivative in determining the unknown parameters of

6. In the nonlinear case. it is similar to both, that proposed by Bernd et.al. (3) and Amemiya’s
method (1). which is the nonlinear analogue of Hausman’s procedure. In contrast with the linear case. it
does not produce an asymptotically efficient second round estimator even if the initial estimator is con-
sistent. but as in the linear case, it illustrates the similarity and the difference between the maximum
likelihood and non-linear three-stage squares estimator.

7. It has also been extensively evaluated as a numerical method technique and appears to be among
the most efficient computational methods presently available (see M. Box, D. Davies and W. Swann
(4)).
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an over-identified simultaneous equations model. The approach of estimating
parameters, by the FIML method considers the likelihood function to be a general
non-linear function of the unrestricted structural parameters, and maximizes it dire-
ctly using conjugate directions of search method. This yields a ready approximation
to the variance-covariance matrix. The Powell algorithm provides an explicit expres-
sion for the estimates of B and I'. From this, we can derive the maximum likelihood
estimates of the restricted reduced form, P = —BI'"'. The FIML estimators are e-
quivalent to the so called least generalized residual variance estimators, which are
obtained by minimizing the determinant of the variance-covariance matrix of the
reduced form residuals.®

Since FIML is an iterative technique, some initial values must be given to start
the iteration. Apparently, if those values are reasonably close to the real values, it
might be expected that the iteration procedure can be made to converge faster and
the computation time will be minimized. As such initial values will be used, those will
be obtained from a single-equation methods like 2SLS, LIML etc.

In a very recent paper Fair and Parke (12) obtained full information estimates of
a fairly large nonlinear model. This was made feasible due to a development of an
algorithm by one of the authors (Parke (24)). This algorithm is fundamentally dif-
ferent from the algorithm used by others i.e., Dagenais (8). Like Powell’s algorithm,
it does not require any derivative of the likelihood function. It, instead, takes advan-
tage of certain features of the model’s structural equation. There are, however, some
practical points that arise when trying to use the Hausman test in the present con-
text, and the current application of the test has only been partly successful. This is
likely due to small sample problems. It thus gppears that more observations are
needed before the Hausman tests can be applied with much confidence.

4. Concluding remarks

The FIML method of estimation presupposes and utilizes a priori information
concerning the linearity of the complete system of equations. Estimators are obtained
by maximizing this logarithmic likelihood function subject to all the a priori restric-
tions built into the model. In fact, more efficient estimates can be obtained as more
valid restrictions are utilized.

Although the FIML estimators have many desirable statistical properties, they
also possess a number of less desirable qualities. The large amount of computation
required is one of the disadvantages. Generally the more computations are needed,
the greater the chance of introducing, unwittingly, rounding-off errors into the
answer. Another drawback is that so many assumptions have to be made to enable

8. See A. Goldberger, (15). pp. 352-356.
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us to obtain the estimators sought. The normal distribution of the error term is a
strict assumption.” There may be occasions on which this assumption appears too
strong. What is somewhat more serious is the implicit assumption that the model is
well specified. which means that it portrays reasonably the interrelation existing
among the variables considered. With this notion we do not mean that the model is
not linear, rather it has been mis-specified. That is, if we have wrongly specified even
one parameter, then the estimates of all other parameters in the model are bound to
be affected in some way.

Moreover, though many interesting alternative optimization algorithms have been
mentioned in this paper. particularly the one proposed by Powell (mainly when the
initial values are near to the optimum), the FIML method is generally time-
consuming to compute the non-linear parameters of the model. Hence, the future
research will have to be concentrated on less-consuming iterative methods, which
would permit convenient full-information estimation of a simultaneous equations
model. Moreover, the choice of a general procedure to calculate the FIML estimates
will require further experimentation, especially in larger systems, for which almost no
results have been reported.
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