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Summary

This paper is concerned with the stochastic control of population distributed on 9
geogrgphic regions in Greece. Particularly, having the trangtion matrix between
urban, semi-urban and rura pupulation and the corresponding growth operator
matrix in each geographic region, we determine the maintainable and attainable
region of the population digtribution and the corresponding intervention factor to ob-
tain a desred population distribution. These results of the analysis seems to be very
hdpfu in the regiond planning.

1. Introductory remarks

In order to gpply an appropriate policy in the regiond planning, the basc de-
ment of the invedtigation is the determination of the population distribution. By this
way, the firg problem in the gpplication arises immediatdy with the desred or god
digribution. It is very quedionable if the desred populaion digtribution can be
reeched by an initid didribution. Of course, the solution of the problem dould de-
pend on the trandition matrix which reflects the high or low mohility of the popula-
tion. On the other hand, in order to obtain a god distribution, we have the oppor-
tunity to intervene an appropriate policy factor which denotes the number of people
added or withdrawn in each subregion of the regarded system. From these reasons, it
will be hdpful to sedfy more clearly what is that we wish to control and the means
which are avalable to exercise control. Thus, we shdl am to control a populétion
digribution in a time-intervd and in a st of subrogions, thereby dtering the totd
number of people in each subregion of the population sysem and holding the non-
diagond dements of the tranition matrix out of the control.

Such congderations on the control policy we will goply in the 9 geographic
regions in Greece. Thus, having a subdivison in urban, semi-urban and rural popula-
tion, we edtimate the transition probabilities between the regarded subdivision in each



geographic region. As we mentioned before, the population mobility can be not under
control, because the population is free to move everywhere in the region. On the
other hand, it could be under control the number of people which are immigrated or
emigrated abroad, because of the needed permission, and the number of people mov-
ing to or from other regions in the country, because of the migration conditions.
Moreover, this concept can be extended in other factors, including for example birth
control, depending every time on the aim of the regional planning policy. Thus, we
have under control the diagonal elements of the growth operator matrix which is a
sum of matrices, consisting of the transition matrix and the diagonal birth, death and
migration matrices.

However, the control problem is treated in two aspects in the following analysis,
which arise immediately from the above considerations. The steady-state control is
used to refer to the problem of holding the grade structure at some specified values.
This is the first problem, because the main and first aim in the regional planning
policy is a preservetion of the observed population distribution. The more generalised
case, sequential control refers to the problem of changing a given population distribu-
tion to some desired distribution by a sequence of adjustments to the control
parameters. This is the second and more specified problem in the regional planning
policy.

2. Steady-state control

We consider the population distribution w (t)=(wj(t), i=1,2,3) at the time point t
in each geographic region, where exist a subdivision in urban (i=1), semi-urban (i=2)
and rural (i=3) population. The basic equation of the population development can be
written as follows:

w(t+l)=w(t) (P+B-D+N,+N,)=w(t) G 2.1

where B,D,N,,N, are diagonal matrices, whose diagonal elements denote the crude
birth, death, net migration rate abroad and net migration rate to other regions respec-
tively and P the transition matrix.

Under these considerations, we can introduce the following decomposition of the
growth operator matrix G, in order to determine the maintainable region of the pop-
ulation distribution. Thus, we have:

w(t+1) =w(t) R+w(t) Q, (2.2)

where Q is a diagonal matrix with elements the diagonal entries of G and R is a
(3x3)matrix with elements the non-diagonal entries of G.

A population distribution can be maintained if we can find a control parameter f
such that w (t)-= w (t+1)=w. Then we can rewrite the equation (2.2) as follows:

v=v R + v Q f 2.3)
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where Q now a column with entries the diagonal elements of G and V are the
relatives sizes:

—%ig))s ‘;f(t): :2”( Wi(t)s (n=3)- .

vilt)=

It is evident from the formulation of the equation (2.3) that the intervening factor

f takes in account a policy not only in migration but also in births and deaths.

If the intervention factor fis the only set of parameters amenable to control, we

have to determine an f satisfying the equation (2.3). A solution for f could be derived
by direct computation from (2.3). Thus, we have:

f= v - RMQ. (2.4)

It is easy to check that the elements of f may be not all positive, but they add up
to one, if G is a stochastic matrix. If the elements of f are not positive the distribu-
tion is not maintainable.

A positive contribution of the introduced decomposition is the possibility of deter-
mining the set of population distributions which can be maintained. A simple
characteristic of the maintainable region M, which follows directly from (2.3) is that
it is the set of v for which v>vR. (Bartholomes, 1973).

The boundary of M may be found from (2.3). Hence

v=Qfd-R)-", (2.5)
where the inverse always exists. The vector f may be written as:
f=> f ¢ n=3), 2.6
.Z—t i € { ) (
where ¢j is a vector with an one in the ith position and zeros elsewhere. Substituting
in (2.5), then gives:
v=v Q Z file; (1 - R)™'). (2.7)
=1

By post-multiplying both sides of (2.7) by a column vector of ones, vQ can be deter-
mined and by substituting in (2.7) the vector v becomes the form:

ey ;" fedT - R, 28)

- ; £

where di is the sum of the elements of the ith row of I — R)™'.
The vector v has been presented as a convex combination of the points with
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coordinates d ei(1 — R) '. Thus, the maintainable region is a convex hull with this
points as vertices. These vertices are easily computed by taking the rows of (I — R)~'
in turn and scaling their elements, so that the row sums are one.

In a further application, we can introduce a growth factor a (t) given by:

e i) 2.9)
w(t)

Thus, the corresponding intervention factor may be determined by:

f=nv(-R +avivQ+ 3 (2.10)

and the arqument leading to the determination of the vertices of M goes through in
this case, with obvious modification to give the vertices of M with coordinates
proportional  to:

ei(I(1+a)-R)%. (2.11)

It is evident from the above considerations that the maintainable region may be easi-
ly determined according to the introduced decomposition of the growth operator
matrix, so that the inverse (I — R)~' always exists and has positive elements.

3. Sequential control

Let us now suppose that there is a goa population distribution g which must be
attainable from at least one other distribution y in one step. Thus, the basic equation
for the population development is:

g=yR+yQf, (3.1

where R and Q represent the introduced decomposers of the growth operator matrix
G and f the intervention factor.
The firgt problem in the sequential control is to find the attainable region A. This
may be determined directly from (3.1) having the necessary condition g YyR.
The boundary of A may be found, more convenient, according to the introduced
decomposition of G. Thus, the attainable region A is a convex hull with coordinates:

ejR+Qej,((ij=1,2,...,k), 32
where g is a k-dimensional vector with one in the ith position and zeros elsewhere.
Of course not dl points will be vertices of the attainable region, because some of
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them may be interior points. It is easy to check, for small k, the interior points and
as a result of this, which points will be vertices of A.

The more interesting and difficult problem in the sequential control is the deter-
mination of control strategies. This means that we have to find a sequence of in-
tervention factors which lead from an initia population distribution to a desired dis-
tribution. More explanatory, we define the problem in the following way. Let us con-
dder the equivalent equation of the population development in the form:

w(t+l) = w(t) G+r(t), (3.3

where r (t) is a row vector which denotes the new intervention factor at the time t.
The problem is to find a t' and a sequence of vectors (r(t)}, t=1,2,...,t", such that t' is
the smallest t for which w(t)=g.

In our applications the target population distribution may not be something which
has to be attained precisely but rather an indication of the limit structure of the
declined population distribution. From this reason, we ignore any optimal condition
about the time. Furthermore, in an other simplification, we consider the intervention
factor independent of the time, so that the feasible goal population distribution g will
satisfy, after t time-periods, the eguation:

=1 Tl
g= w(0) G 2 r G5, (3.4)

In a gradualy declining or stationary population, where the dominant
characteristic root of G is less or equal to unit, it is easy to determine by simple
algebraic calculations the unique r, which is given by:

r= g (I-G), (35)

where the goal distribution is feasible after t= time-periods.

The constrain for infinite number of steps may appear to be impossible to enforce
an infinite number of conditions. However, the theorem of Kemeny and Snell, (1962),
provides an algorithm for establishing feasibility in a finite number of steps.

It is evident from the equation (3.5) that the elements of the intervention factor r
may be not al positiv althought the goal distribution is feasible. Furthermore, they
add up to zero, if G is a stochastic matrix.

4. Results of the applications

In order to apply the procedures of stochastic control, introduced in the foregoing
paragraphs, the first element of the investigation is an estimation of the growth
operator matrix in each geographic region. Thus, having the statistical data about in-
terregional migration during the time-period 1966-1971, published by the Greek
Statistical Service as results of the population and housing censuses in 1971, we es-
timate the growth operator matrix on the basis of distributional data in each



geographic region, where the distributional data in 1971 were gathered during the
census and in 1966 were estimated according to a stochastic projection of the pop-
ulation distribution in each geographic region (Tziafetas, 1982). This method (Rogers,
1968) may be used if data about birth, death and migration are not available or if
they are not reliable. Thus, we illustrate in table (4.1) the growth operator matrix G
for the 9 geographic regions in Greece with the intrinsic rate of growth, determined
by the calculation of the dominant characteristic root of G.

TABLE 4.1

The growth operator matrix and the intrinsic rate of growth of the 9 geographic regions in Greece

Growth operator matrix Intrinsic rate
of growth

Rest of Central 1.04147 0.01168 0.00796

Greece 0.01394 0.96161 0.01253 1.04650
0.03169 0.04284 0.91974

Peloponessos 0.93295 0.00126 0.01321
0.01679 0.89035 0.01267 0.94766
0.04073 0.01517 0.90181

Tonian Islands 0.73770 0.00131 0.03540
0.0129 0.80886 0.01440 0.91067
0.05687 0.03905 0.89239

Epirus 0.97254 0.00289 0.01965
0.01532 0.75665 0.02452 0.97821
0.02092 0.02160 0.89408

Thessaly 0.95006 0.00622 0.00824
0.03926 0.81805 0.02243 0.96621
0.07033 0.02723 0.91263

Macedonia 1.02760 0.00413 0.00940
0.03933 0.85383 0.01680 1.03321
0.05379 0.02144 0.91064

Thrace 0.89527 0.00574 0.01930
0.01269 0.83697 0.00176 0.95304
0.04490 0.02372 0.93166

Aegean Islands 0.87907 0.00773 0.01694
0.01196 0.91957 0.01452 0.93626
0.02838 0.01936 0.90006

Crete 0.94665 0.00341 0.02788
0.02186 0.81312 0.02584 0.97357
0.06780 0.03086 0.89246
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Because of a very fast changing structure of the population in Greece, the first
problem on the regional planing policy is a preservation of the observed population
distribution. It means that we have to determine in steady-state control the main-
tainable region of the population distribution which is a convex hull with vertices
determined by (2.11). Thus, in table (4.2) we illustrate the maitainable region for the
9 geographic regions in Greece with the corresponding intervention factor, deter-
mined by (2.10), in order to preserve the observed population disiribution.

P

TABLE 42 o o

ntainable region and the corresponding intervention factor I for - Wi mooes
a steady-state contro) in the 9 geographic regions in Greece

Maintainable region Intervention factor
Rest of Central - 0.98114 0.01126 0.00760 0.23107
Greece ) ) 0.01334 0.97489 001177 0.24648
syt D 0.02847 0.03851 (.93302 0.51378
Peloponessos 0.98472 0.00152 0.01375 0.25687

o 0.01774 0.96906 £.01320 0:32619
g 7T 0.04084 001517 0.94399 067637

Tonian Islands 0.95967 0.00298 003738 0.12473
SFAR 0.01513 0,96896 0.01591 0.17777

ST 0.05703 0.03885 0.90412 0.74862

Epirus 097697 0.00332 0.0i971 0.21505
ey o 0.01555 0.96007 0.02438 0.06983

0.02082 0.02121 0.95797 0.78604

Thessaly e 0.98487 0.00658 0.00855 0.30726
b 003973 0.93815 0.02212 0.16780

0.06707 0.02599 090694 0.55523

0.03688 0.94738 0.01574 0.15916
0.04923 0.01952 0.93125 0.43469

Macedonia .0 4 0.93682 0.00413 0.009%05 0.40982

Thrace 097378 0.00636 0.01987 0.25163
o 0.01388 0.96383 0.02229 0.12286

e Tl 0.04424 0.02347 093229 0.64358

Aegean Islans 0.97384 0.0084) 0.01775 0.25069
Clnine o 0.01288 097183 0.01530 0.22031%
0.02908 0.01991 095101 0.60463

Crete 0.956789 0.00427 0.02783 0.28397

SR 0.02316 0.95094 0.02590 0.09688
' ) 0,06383 0.02898 0.90719 0.562835




For example, in Pdoponessos the intervention factor is (0.25687, 0.12619,
0.67637). Having in the year 1966 a total number of 10385 (XOOQO) people, dis-
tributed 284.6 in urban, 126.3 in semi-urban and 627.6 in rurd regions, it is ex-
pected, according to the diagona entries of the growth operator matrix and the in
trindc rate of growth, a number of 2935 will be in urban, 1223 in sami-urban and
571.2 in rurd regions. According to the introduced intervention factor, from the in
titid population should be, dter a five years time-period, 269.6 people in urban,
119.7 in sami-urban and 594.7 in rurd regions. It means that the urban and semi-
urban population should be decreased by 239 and 2.6 people repectively and the
rurd population should be increased by 235 people, during the time-period 1966-
1971, in order to preserve the observed population digribution in 1966.

Taking the coordinates of the vertices of the maintainable region in each one of
the geographic regions, it is easy to have a geometric representation in a triangular
diagram, as it was ploted in fiqure (4.1) for Peloponessos, and then to check if an
obsarved population distribution is maintenable or not.

Figure 4.1

A geometric representation of the maintenable region in Peloponessos.

(0,1,0)




In order to solve the attainability problem in regional planning policy, we deter
mined the attainable region A of the population distributions from which a goal dis
tribution can be reached in one step. According to our considerations, the coor-
dinates of the vertices of. the attainable region may be elected from the coordinates
determined by (3.2). For example in rest of Central Greece the set of coordinates are:
(1.04147, 0.01168, 0.00796), (1.05541, 0.0, 0.01253), (1.07316, 0.04284, 0.0), (0.0,
0.97329, 0.00796), (0.01394, 0.96161, 0.01253), (0.03169, 1.00445, 0.0), (0.0,
0.01168, 0.92770), (0.01394, 0.0, 0.93227), (0.03169, 0.04284, 0.91974).

Having, a geometric representation in atriangular diagram, scaling the coordinates
so that they add up to one, it is easy to check that only the first point is an interior
one. It means, that a point may be interior in a convex hull if his coordinates are
greater than one.

In a further application of the stochastic control on population distributions, we
estimated the intervention factor in each one of the 9 geographic regions in Greece,
in order to obtain a goal distribution which provides an increase of 4% in urban
regions and has the same number of people in semi-urban and rural regions, as the
observed population in the year 1966.

As we see in table (4.1), 7 regions have an intrinsic rate of growth less than one,
so that the goal distribution is feasible after a great number of steps, according to the
equation (3.4). In this case we determine the intervention factor from (3.5). For ex-
ample in Peloponessos, we estimated the intervention factor (-7.836, +3.954,
+56.114) and a goal distribution (296.0, 126.3, 627.6). Thus, having the initial pop-
ulation distribution (284.6, 126.3, 627.6) we found, for some steps, the following dis-
tributions:

1. step: (285.6, 126.3, 627.5)
2. step: (286.0, 126.3, 627.6)
3. step: (286.7, 126.3, 627.6)

The population system investigated in the other 2 geographic regions of Greece is
an intractable one to analyse within the above framework. It is an expanding popula-
tion system, whose total population increases over time, as a result of an excess of
births and immigration over deaths and emigration. However, this is the most com-
monly observed population system. Unfortunately, no analytic solution is immediate-
ly apparent. From this reason, we are obliged to apply an heuristic alogorithm which
leads to a succesful result.

Having the fundamental equation (3.4) in an expanding population distribution
exposed to an unchanging regime of growth, G, with an intrinsic rate of growth,
A>1, we etablish a generalisation of (3.4) by:

=1

g=wi0)Gf+§rASGS.

Thus the suggested heuristic algorithum has the following steps:
1. Transform the growth operator into a stationary population counterpart by
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reducing each diagonal element until the elements of each row in the operator sum to
unit.

2. Find the intervention factor, r, for the stationary population system.

3. Increase the intervention factor, r, by the intrinsic rate of growth, A, at each in-
tervention, that new the intervention vector is A- r.

Applying in the -2 expanding geographic regions the above algorithm, we estimate
the intervention factor r for the corresponding stationary system as they have been il-
lustrated in table (4.3).

TABLE 4.3

The intervention factor r and the goal distribution g in the 9 geographic regions in Greece

Intervention factor r Goal distribution g
Rest of Central Greece -14.250 -17.090 +31.340 245.8 255.3 489.7
Peloponessos -1.836 +3.954 +56.114 296.0 126.3 627.6
Tonian Tslands +0.437  +1.780 +12.350 1.7 36.1 130.1
Epirus -3.346  +3.334  +22.848 71.9 26.1 235.1
Thessaly -17.420  +9.948 +25.730 227.0 114.1 345.2
Macedonia -45.244 -3.361  +48.605 824.9 307.1 797.1
Thrace +1.003 +1.761  +11.745 101.3 43.7 201.6
Aegean Islands +5.615  +1.935 +21.093 112.9 93.6 243.8
Crete -12.431 +0.265 +24.700 146.2 50.3 279.9

* For the expanding regions the intervention factor was estimated according to the corresponding sta-
tionary population system.
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