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i, INTRODUCTION 

In the analysis of any capital investment problem two factors arise for which 
descriptive methods must be developed. First the return and second the risk or 
uncertainty associated with that return. The problem of analyzing the magni­
tude and timing of returns is generally resolved by using the net present value. 
However, the treatment of risk is not entirely satisfactory. 

A review of the capital budgeting literature gives a variety of techniques for 
evaluating risk. These techniques can be categorized as either deterministic or 
probabilistic approaches to risk analysis. 

The payback period method is one of the earliest deterministic methods for 
evaluating risk. The use of this method is based upon the assumption that the 
shorter the payback period, the less risk the investment. The application of this 
method to the analyiss of risky investments assumes that an investment has as­
sured net cash flows during its payback period but that its subsequent returns are 
so uncertain that they must be regarded as virtually nonexistent. From the fact 
that this method is not based upon the time value of money and does not take 
into account cash flows beyond the payback period or give any consideration to 
the uncertainty of future cash flows it is considered as an inadequate indicator 
of risk and a crude measure for reaching sound investment decisions. 

The deterministic net present value method with the discount rate increased 
by an arbitrary amount for risk is another method of investment analysis for 
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conditions of uncertainty. The main difficulties with this method are determina­
tion of the adjustment that should be made in the discount rate, and the use of 
single value estimates for future cash flows by discounting at a risk adjusted dis­
count rate, is generally considered to be better than the payback period method. 

Another approach to risk analysis is the certainty - equivalent method which 
uses discounting at a risk free interest rate and accounts for uncertainty in fu­
ture cash flows by multiplying the forecasted cash flows for each period by a 
risk adjustment coefficient. Specifying these certainty equivalent coefficients for 
each period in the analysis is one of the primary drawbacks associated with this 
method. 

Sensitivity analysis is a method that examines the effects on the measure 
of merit of the investments to variations in the key economic elements. Typically 
minimum, most likely, and maximum estimates of the major factors are combi­
ned to obtain extreme values of the measure, thereby estimating the total rang, of 
possible outcomes. This method can be an effective technique when used in con-
juction with other methods for risk analysis. Hillier [6] has pointed out that this 
method should not be used alone since it cannot adequately asses the 
overall risk of an investment. 

Each of the above methods uses «single - value» or «best» estimates for the 
magnitude and timing of returns. Such estimates do not clearly show the uncer­
tainty inherent in future returns. In recent years several methods have been de­
veloped which specifically deal with the uncertainty surrounding the future cash 
flows. These techniques use probability and distribution theory and in some ca­
ses with the help of modern computers provide the decision make with much 
more information on which to base his investment decisions. Principal among 
the probabilistic techniques are the analytic methods developed by Hillier [6,7]. 
These methods make use of the properties of statistical distributions and, under 
certain assumptions, derive the distribution function of the two major profitability 
criterion functions [Net Present Value and internal Rate of Return] from the 
estimated mean and variance of the individual cash flow for each time - perod. 
Such procedures form an approach for the evaluation of single risky investments 
utilizing discrete cash flows and discrete discounting. This technique was extented 
to the case of serveral interrelated investments by Hillier [8] and refined by Wagle 
[15]. It was further developed to consider continuous cash flows with continuous 
discounting by Motazed [10]. The element of uncertain timing of the cash fows 
has been given consideration by Motazed [10], Perrakis and Henin [12] and Young 
and Contreras [18]. Reismann and Rao [13] have studied a stochastic rate of 
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inflation independeut to the discounting rate. Motazed [10] and Zin, Lesso, and 

Motazed [20]utilized cash flow profiles developed by Young [17] and Laplace 

transform methods discussed by Buck and Hill [2,3]. Grubbstrom [5] and Young 

[17] to develop analytic expressions for the expected value, variance and semi -

variance of the pressent value. Canada and Wadsworth [4] not only establish a 

methodology for approximating the expected value and variance of present va­

lue but also present a method for evaluating two comparable projects based on 

their distributions of present value. Tanchoco and Buck [14] present a closed 

form methodology based upon the Zeta transform for obtaining statistical mo­

ments of the net present value for discrete cash flows. Zinn [19] demonstrated the 

advantage of using moment generating functions, to obtain the formulae deve­

loped by Motazed. 

The above analytic probabilistic techniques, with the exclusion of Tanchoco 

and Buck [14] and Perrakis and Henin [12]' center about the derivation of mean 

value, variance and, in some cases, semivariance of the net present value for an 

fnvestment project. These values are then used to estimate the risk associated 

with the return. Tanchoco and Buck include the third and fourth moments of 

the distribution of the net present value of discrete cash flows. They also indi­

cate the ability to calculate higher moments. Only Perrakis and Henin mention 

the possibility of attenting to determine, at least numerically, the actual distri­

bution function of the net present value is preferable in view of the fact that a 

finite set of moments does not ' necessarily specify a unique distribution function 

from which the moments arose. 

This paper presents the results for the evaluation of the distribution function 

of the present value of an investment, in which the cash flows take place at 

discrete equidistant time periods, and the investment terminates after a given 

number η of periods. The initial cash outlay is deterministic and the cash flows 

are continuous independend random variables with known distribution functions 

and the discount rate is given. These assumptions are quite plausible, because in 

many investrnemt projects the initial outlay is known in advance and the cash 

flows are random variables. 

2. Results 

In this section certain results for the distribution function of the present va­

lue of an investment project are established. We consider investments with cash 

flows, 
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[Xk : k= 1, 2, ,n) at the and of years 1,2, , η respectively, where Xk are 

continuous independent randon variables. The economic life of the investment 

and the discount factor are not considered as random variables. Hence our pur. 

pose is to find, under certain assumptions for the cash flows, the distribution 

function of the linear statistics 

where α = 1/(1 + r) and r is the rate of interest. 

Proposition 2.1 

If the cash flows [Xk : k= 1,2, , n) are independent exponentially di­

stributed random variables with parameters λk = λα k, k = 1,2, ,η λ > 0, 

then the present value Y is a gamma distributed random variable with scale pa­

rameter λ and index parameter n. 

Proof 

The characteristic function of a kX k, k= 1,2, , is given by 

Hence the characteristic function γ(u) of present value Y has the form 
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Letting λk = λak in (2.2) we get that 

Hence the present value Y is a gamma distributed random variable with 

scale parameter λ and index parameter n. 

Remark 1 to Proposition 2.1 

We suppose that the cash flows [Xk : k = 1,2, ,n) are independent gamam 

distributed random variables with scale parameters λκ == λak, k = 1,2, ,n, 

λ L 0 and index parameters Ck > 0 . From proposition 2.1 it easily follows that the 

characteristic function γ(u) of Y has the form 

λ 
γ ( u ) = ( )C 

λ-iu 

where c=c1 + c2 + . . . . + cn. 

Remark 2 to Proposition 2.1 

The function 

λ 
, λ > 0, 

λ + | u | 

is the characteristic function of a power mixture of Cauchy distribution. With 

exponential mixing distribution, we suppose that the cash flows [Xk : k— 1,2,...,n) 

are 
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independent random variables with characteristic function 

If λκ = λak then from proposition 2.1 it follows that the characteristic fun­

ction γ(u) of Y has the form 

Remark 3 to Proposition 2.1 

The function 

is the characteristic function of a scale mixture of exponential distributions with 

mixing distribution F(x). We suppose that the cash flows [ X k : k = l , 2 , ,n) 

are independent random variable with characteristic function 

oo λk 

φk (u) = / dF(x), λk>0. 
0 λk- iux 

If λk= λak then from proposition 2.1 it follows that the characteristic fun­

ction γ(u) of Y has the form 

λ 
γ(u) = [ S dF(x)p. 

0 λ-iux 
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Proposition 2.2 

If the cash flows [Xk :k = 1,2, ,n) are independent Laplace distributed 
randon variables with paramètres λ κ = λα2 k= 1,2,...., η λ ) 0, then the pre­

sent value Y is a random variable distributed as the nth convolution of the 

Laplace distribution with parameter λ. 

Proof 

The characteristic function of the random variable akXk, k= 1,2, ,n is 
given by 

(φ>k(u) = 
λ k + a 2 k u 2 

Hence the characteristic function of Y has the form 

η Η 
γ ( u ) = Π ( ) (2.3) 

k = l λk+α2tu2 

Letting λk = λα2k in (2.3) we get that 

λ 
γ(u) = ( ) n . 

Hence the random variable Y is distributed as the nth convolution of the 

Laplace distribution with parameter λ. 

Remark 1 to Proposition 2.2 

We suppose that the cash flows [Xk : k— 1,2, ,n) are independent random 

variables having characteristic function 
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λk + U2 

where λk = λ a 2 k , k= 1,2,...., η, λ > 0 . From proposition 2.2 it easily follows that 

the characteristic function γ(u) of Y has the form 

where c = ci + c2 + . . . . + cn. 

Proposition 2.3 

If the cash flow (Xk : k= 1,2,...,n) are independent normally distributed ran­

dom variables with mean μ and variance σ^ then the random variable 

is normally distributed with mean 

. 
Proof 

The characteristic function of the random variable αkX]£, k=l ,2, . . . . ,n is 

given by 
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1  

φk(u)= exp^iμαku— a 2 kσ 2u 2{. (2.4) 
2 

Hence the characteristic function γ(u) of Y has the form 

Since 0 < a < 1 it follows that 

n-> oo 1-a 1-a 

and 

l-a 2n 1 
1 im · = 

n-»· oo 1-a2 1-a2 

Hence from (2.5) we get that the random variable lim Y is normally distri­

buted with mean n-» oo 

αμ 

1-α 



and variance 

α2σ2 

1-α2 

Proposition 2.4 

If the cash flows (Xk : k — l,2,....,n) are independent Cauchy distributed 
randon variables with location parameters μ and scale parameters λ then the 
randon variable 

ban Y 
n->oo 

is Cauchy distributed with location parameter 

αμ 

1-α 

and scale parameter 

αλ 

1-α 

Proof 

The characteristic function of the random variable akXk, k= 1,2, ,n is 
given by 

q>k(u) = exp{ak[iμu - λ | u | \. (2.6) 

Hence the characteristic function γ(u) of Y has the form 
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1-αn 

exp \α[ίμ\ι - λ|υ| } (2.7) 
1-α 

Since Ο < α < 1 from (2.7) it follows that the random variable 

is Cauchy distributed with location parameter αμ ( 1 — a ) and scale parame­
ter αλ (1 — α). 

Proposition 2.5 

Let the cash flows (Xk :k — 1,2,.. .n) be independent distribution random 

variables with characteristic functions 

where Wk(u) is the characteristic function of a distribution function Wk(x) on 

[0, oo ) with finite mean. Then the characteristic function γ(u) of present value Y 

is of the form (2.8). 
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Proof 

The characteristic function of akXk, k — 1,2,....» n is given by 

Since 

η 1 

ψ (u) = Σ — W k ( a k u ) 
k = l η 

is also, the characteristic function of a distribution function on [0, <x) with fi­

nite mean and 

1 Ψ(uχ)-1 
γ ( u ) = e x p { / dx}, 

0 χ 

it follows that the characteristic function γ(u) of the present value Y is of the 
form (2.8). 

Remark 1 to Proposition 2.5 

Characteristic functions of the form (2.8) belong to class L. Distribution 

functions with characteristic functions belonging to class L are unimodal [16]. 

Since the characteristic function γ(u) of the present value Y is of the form (2.8)it 

follows that the distribution function of the present value is unimodal. 

The concept of the unimodality, besides being useful and well * known in pro­
bability and statistics, is basic to many practical problems. In economics, unimo­
dality helps to obtain better statistical inferences, 
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Proposition 2.6 

Let the cash flows (Xk : k= 1,2,. .. .,n) be independent random variables 
with distribution functions belonging to class U. Then the distribution function of 
the present value belongs to class U. 

Proof 

The characteristic function of αkXk, k= 1,2,. .. ., η is given by 

where \|/k(u) is an infinitely divisible characteristic function [11]. Hence the cha­
racteristic function γ(u) of the present value can be written in the form 

The function 
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is an infinitely divisible chararistic function. Since 

γ(u) = exp \ / logθ(ux)dx}· 

0 

it follows that the distribution function of the present value Y belongs to classU. 

Remark 1 to Proposition 2.6 

Distribution functions of class Uwhich are (0) symmetrical are also (0) uni­

modal [9]. The convolution of (0) symmetrical and (0) unimodal distribution fun­

ctions is also an (0) symmetrical and (0) unimonal distribution function [9]. 

Hence from proposition 2.6 it follows that if the distribution functions of the 

cash flows are (0) symmetrical of class U then the distribution function of the 

present value Y is (0) symmetrical (0) unimodal of class U. This means that 

the result of proposition 2.6. helps the decision maker to obtain better statisti­

cal inferences. 

Remark 2 to Proposition 2.6 

Let the cash flows (Xk : k= 1,2,.. . ., n) be independent random variables 

with distribution functions belonging to class Up introduced by Artikis [1]. Fol­

lowing proposition 2.6 we can easily prove that the distribution func3ion of the 

present value belongs to class Up. 

3 CONCLUSIONS 

The paper presents certain results for obtaining the distribution function of 

the present value of an investment project. Through the use of characteristic fun­

ctions the distribution function of the present value has been obtained for seve­

ral conceptual examples and new results regarding the distribution of present 

value cash flows obtained which can be used in evaluation of risky investment and 

projects. Applications of the theory developed here will be presented in later papers. 
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