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1. Out- of- sample forecasting has become an important ingredient of diagno­
stic checking. Despite its increasing popularity, however, forecasting exercises 
are still conducted in a rather laborious and time - consuming fashion which be­
come a deterrent especially when when a large number of alternative specifications 
is involved. 

In the present note we address precisely this problem and we suggest a cun­
ning procedure which (i) enriches the informational content of the standard com­
puter output, (ii) reduces forecasting costs, (iii) introduces a computationally effi-
icient way ot summarizing and testing the forecasting ability of a statistical model 
and (iv) facilitates the conduct of predictive structural stability tests. 

2. Consider the linear model Y = Χβ + u, where Y and u denote η — di­
mensional column vectors, β is a p — dimensional column vector and X is a 
np matrix of rank p, with ρ ( η. Define the kth o b s e r v a t i o n - spe c i f i c 
d u m m y v a r i a b l e by the η — dimensional coordinate vector dk = (dik), 
where dkk — 1 and dik = 0 for i different than k. This type of dummy variable 
has two interesting properties that will come very handy in the sequel : 

(i) The inclusion of an observation - specific dummy in a regression is equi­
valent to the exclusion of the corresponding observation from the samble1, and 

1. Observation specific dummy variables have been used extensively in the presence of 
outlying observations. They provide, however, a rather extreme solution to the outlier problem. 
In most instances, the contribution of these non - recurring events can be expressed as c(i) = 
z(i) f + ν (i), where c(i), z(i) and v(i) are coordinate vectors with all but the ith element equal to 
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(ii) The coefficient of the k t h observation - specific dummy is equal to the 

difference between the actual and the projected value of the dependent variable, 

in case the sample on which the projection is based does not include the k t h obser­

vation. 

These two properties hold for the general Aitken estimator and for any other 

estimator isomorphic to it, as in instrumental variable and two - stage least squa­

res estimators, Conchrane - Orcutt and Hildreth - Lu estimation procedures, etc. 

For expository purposes, and without any loss of generality, the proof will beca-

sted in terms of the ordinary least squares estimator. 

3. The least squares estimator ot β, when the k t h observation is excluded 

from the sample, is obtained as the solution of the following minimization pro­

blem.2 

where Xi is a p-dimensional row vector and Yi is a scalar. If, on the other hand, 

the k t h observation is retained in the sample, while at the same time the set of 

regressors is augmented to include dk, the corresponding least squares estimator 

can be obtained as the solution of: 

zero ; z(i) denotes the magnitude of the non - recurring event, the scalar f stands for the impact 
effect while v(i) denotes the measurement error. Finally, c(i) denotes the constant adjustment. It 
can be shown that as long as E[v(i)] = 0 the presence of measurement errors does not give 
rise to inconsistent estimates. In a similar fashion one can introduce prior beliefs-information 
about measurement errors for any one of the explanatory variables. This way of modeling 
non - sample information corresponds to mixed estimation and can be given a Bayesian inter­
pretation. 

2. The following notation is used: Min [X] F(x) stands fo7 the minimization of F(x) with 
respect to χ ; Σ denotes the summation over all i, while in Σk the summation is over all va­
lues of i different from k. Finally, fk and f are used interchangeably. 
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the same minimun and that this minimum is attained for the same values of b 
and fk. 

Notice first that min[b,f] (Yk — Xk b — f)2 = min [f] (Yk — Xkb — f)2, i.e. for 

any choice of b one can always chose f so that the squared deviation from the kth 

observation is zero. This ,in conjunction with the superadditivity of the min(.) 

functional, implies that : 

min[b,f] Σ(Υι — Xii — dikf)2> 

min [ b ] Σ k(Yi—Xib)2 + min[b!f](Yk—Xkb—f)2 = min [ b ] Σk(Yi—Xib)2 (3) 

The RHS of the above inequality denotes the minimum sum of squared resi­

duals when b and f are restricted in the subspace C = (b,f) I Yk = Xkb+f).The 

LHS on the other hand denotes the corresponding unrestricted minimum. By de­

finition, the unrestricted minimum cannot exceed the restricted one : 

min [ b , f ] Σ(Υί -Xi dkf)2 < 

minc[b,ε] Σk(Yi — X ib — dtκf)2 = min [ b ] Σk(Yi — Xib)2 (4) 

Since inequalities (3) and (4) hold simultaneously, (3) must hold with equa­

lity. This concludes the first part of the proof. 

Let b,* f* be the values of b and f that minimize the LHS of (3). Note that 

the optimal values are related by f* = Yk-Xkb*. Let also that RHS of (4) is mini­

mized for some b**. Because of the strict convexity of the minimands, the two 

optimal solutions [b*, f *'] and b** must be unique. It remains to be shown that b * = 

b** This can be established easily by contradiction : Let that the LHS of (3) is 

minimized for some b* different than b**. Then, either (Yk-Xkb**)2 > 0, in which 

case b** cannot be optimal, or the optimal solution is not unique. O.E.D. 

In a nutshell, this proposition says that one can obtain the same estimate 

of β under either one of the following two procedures : (i) least squares estima­

tion with the k t h observation excluded from the sample, or (ii) least squares esti­

mation using the entire sample and a dummy for the kth observation. In the 
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latter case, the coefficient of ak is equal to fk = Yk — Xkb, namely the forecast 

error of Yk when b has been estimated from a sample which does not include 

the k t ηobservation. Positive values of fk imply that the estimated model un-

derpredicts the corresponding observation of the dependent variable. 

If the k t h observation of the dependent variable is set equal to zero while 

at the same time dk is included among the regressors, then minus the coeffi­

cient of the observation-specific dummy is equal to the conditional mean of 

the dependent variable, i.e. = fk - Xkb. In forecasting and in static out - of- sa­

mple simulation experiments one purports to estimate Yk conditional on some 

senario(s) about the exogenous and the predetermined variables, Xk. These sena-

rio(s) can be used to augment the original sample (X,Y) by stacking underneath 

it the sui - generis observation (Xk,0). Running ordinary least squares with the 

appropriate observation-specific dummies included among the regressors, one 

can then obtain, in a single computer run, both the OLS estimate of β and 

the forecast of the dependent variable, - fk — Xkb. 

4. The properties of fk just menitioned suggest the following four - part compu­

tational scheme : 

STEP I Decompose the samble (X,Y) in two subsections : 

section A, to be used for parameter estimation only ; and 

section B, to be used exclusively for testing out - of - sample 

forecasting performance. 

STEP II Append to the original sample (X,Y) a third section, section C, con­

sisting of estimates of the exogenous and the predetermined variables, 

Xc, for the forecasting horizon. 

The corresponding values of the variable to be forecasted are set equal 

to zero. 

STEP III To each observation in sections Β and C assign an pobservation-speci­

fic dummy, DB and DC respectively. 

STEP IV Estimate β using the entire samble, i,e. sections A,B and C together 

wtth the augmented set of regressors. 
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5. The above scheme can be used to readily calculate from the standard 
computer output the Z(q) statistic of forecasting accuracy based on the q post-
samble observations3. Let σ stand for the standard error of the regression, fi 
denote the forecasting error in period i, and Si and ti denote respectively the 
standard error and the t * statistic of fi. Then, Z(q) is defined4 as : 

It is distributed asmptotically as chi * square with q degrees of freedom and 
takes on high values either when ti is high or when Si is large in comparison to 
S. A significant value of Z(q) indicates either that the model has been incor­
rectly specified and/or that the stochastic properties of the data generating pro­
cess have changed. 

The null hypothesis Ho : fB = 0 provides an alternative predictive test for 
structural stability. The test statistic is 

F = [SSRB - SSR) SSR[ (n - p) /nB) 

where SSRB and SSR denote the resticted, fB = 0, and the unrestricted sum of 
squared residuals, both calculated on the basis of Sections A and Β the sa­
mple5. It is distributed as F(nB, η - ρ), ρ being the number of estimated para­
meters while nB denotes the number of observations in Section B. This is a va­
riant of the Chow structural stability test6 and comes particularly handy when 
the model cannot be reestimated in Section Β because of an insufficient number 
of observations, i.e. n B < p .  

3. See Davidson et al (1978) and Hendry (1980). Another widely used measure of out-of 
sample forecasting performance is the Mean Squared Forecasting Error, MSFE. It is trivial to 
show that Z(q) and MSFE are related linearly by Z(q) = q(MSFE S2). 

4. The summation runs from Τ + 1 to Τ +q. 

5. Because ot the presence of observation specific dummies for easch observation in Se­
ction B, the unrestricted SSR is identical to the one obtained from Section A alone. 

6. Chow (1960), Dufour (1980) and (1982), Gujarati (1970), Harvey (1976), Oaxaga (1974) 
and Valentine (1971). 
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Both the F and the Z(q) tests evaluate structural stability indirectly on the 
basis of the model' s predictive performance. They rely on the idea that a cor­
rectly specitied and carefully estimated model should not produce consistently 
off-track forecasts. They do not identidfy sensitive or time - dependent para­
meters. In this connection it must be noted that specification tests are most useful 
when (i) the values of the explanatory variables are replicated in the test sample 
(Section B) or at least lie in the same region, and(ii) the ceteris paribus clause is 
approximately valid both before and after the shift period. When the explana­
tory variables move into new regions one cannot separate specification shifts 
from structural shifts or from the effect of omitted variables. 

6. The working as well as the usefulness of the above scheme are perhaps 
best illustrated in the following example7 in which we use the 1966- 82 annual 
samble to (i) estimate a money demand function for Greece, (ii) test for the one-
period * ahead forecasting ability of the fitted equation8, and (iiii) forecast the 
1983 level of money demand deposits. 

The estimation period is 1986 - 81 (Section A), 1982 has been reserved for 
static out-of- sample simulation (Section B), while 1983 is the forecast year (Se­
ction C). The 1983 value of M4 has been set equal to zero and the sample has 
been augmented to include 1983 forecasts for the explanatory variables (Step 11). 
Finally, two dummies, D82 and D83, have been introduced for each one of the 
two years 1982 and 1983 (Step 111). 

Ordinary least squares estimates are presented in the Table overleaf. Z,C, 
Y, R, EINF, RAT and UHOUS denote respectively the annual average of M4 
deflated by CPI, the constant term, GPD at 1970 prices, the interest rate on twelve 
month time deposits, an unbiased inflation forecast, a ratchet variable measuring 
the drachma yield of saving accounts in the US, and a measure of credit rationing. 
All variables are measured in logarithms and hance the residuals are expressed 
percentage deviations from the corresponding fitted values. 

The coefficient of D82 indicates that the 1982 forecast underpredicts the ac-

7. The examble has been chosen solely for exqository purposes. See Gagales (1985) for a 
detailed study of this specification. 

8. In this case static and dynamic forecasts coincide. 
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tual values by 5,3 %; the coefficient of D83 produces a 1983 forecast for real 
money balances equal to exp (6.05384) = 425,7 billion Drs. with a standard devia­
tion of 3,4 %. The Z9(l) statistic is equal to (5.34/1.66)2=10.35, far above its cri­
tical valus at the 1% level of significance. On the other hand, the F * statistic10 is 
marginally significant at [(0,35009-0,22089)/9,22089] [(17 - 9)/l)]= 4.679. The exten-
tion for k > l is straightforward. 

. 

• 

9. To forecast nominal money holding one should either add In (CPI 1983) = 1.6448 to D83 
to obtain a forecast of 2205.4 bn drs. or, equivalently, set the 1983 value of Ζ equal to-ln(CPI 
1983) =-1.6448. 

10. In view of the identity F(l ,d) = t d

2 , for d = 1 the above test is equivalent to at - test. 
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