AN EXTENSION IN RELATIONS BETWEEN DOMESTIC ECONOMIC ACTIVITY
 AND INTERNATIONAL TRADE

By
GEORGE D. PEKOS
Lecturer at the Aristotelian University of Thessaloniki

1. INTRODUCTION

In 1970 W.L. Smith, in chapter 22 of his book presented four cases about relations between domestic economic activity and international trade. But the model, which he used, was very simple, without government expenditures and taxes.

An extension of this model, with new equations, which includes the government expenditures and taxes would be of more scientific interest.

This is the cause I present this work. I will analyse only two of Smith's four cases, because the other two are based on the same idea.

2. THE MODEL

We consider a world in which there are two countries, which we shall call Country 1 and Country 2. For some purposes, it will be useful to think of Country 1 as the country we are primarily concerned with (say, Greece) and Country 2 as the rest of the world. The economies of these two countries are governed by the following set of equations :

$$
\begin{align*}
& C_{1}=\left(1-s_{1}\right) \cdot Y_{1 d}+\overline{C_{1}} \tag{2.1}\\
& M_{1}=m_{1} \cdot Y_{l d}+\overline{M_{1}} \tag{2.2}\\
& Y_{1 d}=Y_{1}-T_{1} \tag{2.3}\\
& T_{1}=t_{1} \cdot Y_{1} \tag{2.4}\\
& Y_{1}=C_{1}+I_{1}+G_{1}+\left(X_{1}-M_{1}\right) \tag{2.5}\\
& C_{2}=\left(1-s_{2}\right) \cdot Y_{2 d}+\overline{C_{2}} \tag{2.6}\\
& M_{2}=m_{2} \cdot Y_{2 d}+\bar{M}_{2} \tag{2.7}\\
& Y_{2 d}=Y_{2}-T_{2} \tag{2.8}\\
& T_{2}=t_{2} \cdot Y_{2} \tag{2.9}\\
& Y_{2}=C_{2}+1_{2}+G_{2}+\left(X_{2}-M_{2}\right) \tag{2.10}\\
& X_{1}=M_{2} \tag{2.11}\\
& X_{2}=M_{1} \tag{2.12}
\end{align*}
$$

In these equations, subscript 1 refers to Country 1 and subscript 2 to Country 2 ; Y is national income (GNP), Yd is disposable income (personal), C is personal consumption expenditures, I is gross private domestic investment, G is government expenditures, X is exports of goods and services, and M is imports of good and services. Equations (2.1) and (2.6) are the consumption functions of Countries 1 and 2.

The parameters s_{1} ans S_{2} are the respective marginal propensities to save : m_{1} and m_{2} are the margimal propensities to import of the two countries and t_{1}
and t_{2} are the marginal rates of tax. Equations (2.11) and (2.1) merely state the fact that in a two country system, the exports of one country are necessarily equal to the imports of the other.

In using system of equations, we are making several assumptions, partly to simplify the presentation and partly to isolate the effects of changes in income from other changes that might be occurring at the same time.

1. We are assuming that the exchange rate between the currencies of the two countries is rigidly fixed and also that internal prices [do not change in either country. In other words, we assume that in both countries there are unemployed productive factors, constant returns in production, and constant factor prices. Real consumption and real imports are taken to be functions of real income.
2. We are disregarding all monetary influences assuming, in effect, that interest rates remain unchanged in both countries.
3. Possible effects of the level of national income or of changes in national income on domestic investment are neglected.
4. No account is taken of elements in the balance of payments other than trade in goods and services.

In this model, investment in each country (I_{1} and I_{2}) and government expenditures $\left(\mathrm{G}_{1}\right.$ and $\left.\mathrm{G}_{2}\right)$ are taken to be exogenously determined. The parameters $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{~T}_{1}$ and T_{2} reflect the level of import, consumption demand and taxes. The model contains twelve equations which are sufficient to determine the twelve variables, $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{~T}_{1}, \mathrm{~T}_{2} \mathrm{Y}_{1 \mathrm{~d}}$ and $\mathrm{Y}_{2} \mathrm{~d}$.

3. FOREIGN TRADE MULTIPLIERS

From this model we will derive a set of foreign trade multipliers which show the effects on income in the two countries of autonomous changes in investment (I_{1} and I_{2}) and of autonomous shifts in import demand (changes in M_{1}, and M_{2}).

The easiest way to begin the derivation of the foreign trade mulitpliers is to write equations 2.1 to 2.12 in rerms of changes;

$$
\begin{align*}
& \Delta \mathrm{C}_{1}=\left(1-\mathrm{s}_{1}\right) \cdot \Delta \mathrm{Y}_{1 \mathrm{~d}}+\overline{\Delta \mathrm{C}_{1}} \tag{3.1}\\
& \Delta \mathrm{M}_{1}=\mathrm{m}_{1} \cdot \Delta \mathrm{Y}_{1 \mathrm{~d}}+\overline{\mathrm{M}}_{1} \tag{3.2}\\
& \Delta \mathrm{Y}_{1}=\Delta \mathrm{C}_{1}+\Delta \mathrm{I}_{1}+\Delta \mathrm{G}_{1}+\Delta \mathrm{X}_{1}-\Delta \mathrm{M}_{1} \tag{3.3}\\
& \Delta \mathrm{Y}_{1 \mathrm{~d}}=\Delta \mathrm{Y}_{1}-\Delta \mathrm{T}_{1} \tag{3.4}\\
& \Delta \mathrm{~T}_{1}=\mathrm{t}_{1} \cdot \Delta \mathrm{Y}_{1} \tag{3.5}\\
& \Delta \mathrm{C}_{2}=\left(1-\mathrm{s}_{2}\right) \cdot \Delta \mathrm{Y}_{2 \mathrm{~d}}+{\overline{\Delta C_{2}}}_{2} \tag{3.6}\\
& \Delta \mathrm{M}_{2}=\mathrm{m}_{2} \cdot \Delta \mathrm{Y}_{2 \mathrm{~d}}+\overline{\Delta \mathrm{M}_{2}} \tag{3.7}\\
& \Delta \mathrm{Y}_{2 \mathrm{~d}}=\Delta \mathrm{C}_{2}+\Delta \mathrm{I}_{2}+\Delta \mathrm{G}_{2} \Delta \mathrm{X}_{2}-\Delta \mathrm{M}_{2} \\
& \Delta \mathrm{Y}_{2 \mathrm{~d}}=\Delta \mathrm{Y}_{2}-\Delta \mathrm{T}_{2} \\
& \Delta \mathrm{~T}_{2}=\mathrm{t}_{2} \cdot \Delta \mathrm{Y}_{2} \\
& \Delta \mathrm{X}_{1}=\Delta \mathrm{M}_{2} \\
& \Delta \mathrm{X}_{2}=\Delta \mathrm{M}_{1}
\end{align*}
$$

We can use equations (3.11) and (3.12) as a basis for substituting ΔM_{2} for ΔX_{1} in equation (3.3) and $\Delta \mathrm{M}_{1}$ for $\Delta \mathrm{X}_{2}$ in equation (3.8). Then equattions (3.3) and (3.8) become.

$$
\begin{equation*}
\Delta \mathrm{Y}_{1}=\Delta \mathrm{C}_{1}+\Delta \mathrm{I}_{1}+\Delta \mathrm{G}_{1}+\Delta \mathrm{M}_{2}-\quad \Delta \mathrm{M}_{1} \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathrm{Y}_{2}=\Delta \mathrm{C}_{2}+\Delta \mathrm{I}_{2}+\Delta \mathrm{G}_{2}+\Delta \mathrm{M}_{1}-\Delta \mathrm{M}_{2} \tag{3.14}
\end{equation*}
$$

Substituting in these equations the values of $\Delta \mathrm{C}_{1}, \Delta \mathrm{M}_{1}, \Delta \mathrm{C}_{2}, \Delta \mathrm{M} 2$ given by equations (3.1), (3.2), (3.6) and (3.7) and the value $\Delta \mathrm{Y}_{1 \mathrm{~d}}, \Delta \mathrm{~T}_{1},-\Delta \mathrm{Y}_{2 \mathrm{~d}} \Delta \mathrm{~T}_{2}$, given by equations (3.4), (3.5), (3.9) and (3.10), we obtain, after some simplification.

From these equations, we can readily derive the multipliers we are interested ${ }^{i n}$.

CASE 1:

Multipliers applicable to an autonomous change in domestic investment in Country $1\left(\Delta I_{1}\right)$.

In this case, we assume that everything in equations (3.15) and (3.16) except investment in country 1 , income in country 1 and income in country 2 remains constant. Thus $\overline{\Delta C}_{1}=0, \overline{\Delta M}_{1}=0, \quad{\overline{\Delta C_{2}}}_{2}=0, \overline{\Delta I}_{2}=0, \overline{\Delta G}_{1}=0$ and ${\overline{\Delta G_{2}}}_{2}=0$.

Equations (3.15) and (3.16) become

$$
\begin{gathered}
{\left[\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)\right] \cdot \Delta \mathrm{Y}_{1}=\Delta \mathrm{I}_{1}+\mathrm{m}_{2} \cdot\left(1-\mathrm{t}_{2}\right) \Delta \mathrm{Y}_{2}} \\
{\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right] \cdot \Delta \mathrm{Y}_{2}=\mathrm{m}_{1} \cdot\left(1-\mathrm{t}_{1}\right) \cdot \Delta \mathrm{Y}_{1}}
\end{gathered}
$$

Solving the second of these equations for $\Lambda \mathrm{Y} 2$,, we obtain

$$
\begin{equation*}
\Delta \mathbf{Y}_{2}=\frac{\mathrm{m}_{1} \cdot\left(1-\mathrm{t}_{1}\right)}{\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)} \cdot \Delta \mathrm{Y}_{1} \tag{3.17}
\end{equation*}
$$

Substituting this into the first of the equations, we obtain,

$$
\left\{\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}^{1}\right)\right\} \cdot \Delta \mathrm{Y}_{1}=\Delta \mathrm{I}_{1}+\mathrm{m}_{2}\left(1-\mathrm{t}_{2}\right) \frac{\mathrm{m}_{1}\left(1-\mathrm{t}_{1}\right)}{\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)} \cdot \Delta \mathrm{Y}_{1}
$$

Solving for ΔY_{1}, we have

$$
\begin{equation*}
\Delta \mathbf{Y}_{1}=\frac{t_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)}{\left[\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)\right]\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right]-\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{1}\right)\left(1-\mathrm{t}_{2}\right)} \cdot \Delta \mathbf{I}_{1} \tag{3,18}
\end{equation*}
$$

Substituting this value for $\Delta \mathrm{Y}_{1}$ in equation (3.17) and solving for $\Delta \mathrm{Y}_{2}$, we obtain

or

$$
\Delta \mathbf{Y}_{2}=\frac{m_{1} \cdot\left(1-t_{1}\right)}{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)} \cdot \Delta \mathbf{I}_{1}
$$

The trade balance of Country $1\left(\mathrm{~B}_{1}\right)$ is the difference between Country l's exports and that its imports is $B_{1}=X_{1}-M_{1}$. Thus, the change in its trade balance is

$$
\Delta \mathrm{B}_{1}=\Delta \mathrm{X}_{1}-\Delta \mathrm{M}_{1}=\Delta \mathrm{M}_{2}-\Delta \mathrm{M}_{1} .
$$

or
$\Delta B_{1}=m_{2}\left(1-t_{2}\right) \cdot \Delta Y_{2}-n u\left(1-t_{1}\right) \cdot \Delta Y_{1}$

Substituting the values of $\Delta \mathrm{Y}_{1}$, and $\Delta \mathrm{Y}_{2}$, from equations $(3,18)$ and (3.19) and simplifying, we have

$$
\Delta \mathrm{B}_{1}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{1}\right)\left(1-\mathrm{t}_{2}\right)}{\left[\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)\right]\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right]-\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{1}\right)\left(1-\mathrm{t}_{2}\right)} \cdot \overline{\Delta \mathbf{I}_{1}}-
$$

$$
-\frac{m_{1}\left(1-t_{1}\right)\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]}{\left[\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)\right]\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right]-\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{1}\right)\left(1-\mathrm{t}_{2}\right)} \cdot \overline{\mathrm{uI}_{1}}
$$

or

$$
\begin{equation*}
\Delta B_{1}=\frac{m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)-m_{1}\left(1-t_{1}\right)\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]}{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)} \cdot \bar{\Delta} I_{1} \tag{3.20}
\end{equation*}
$$

The change in the trade balance of Country $2, \Delta \mathrm{~B} 2$ is the same as the change in the trade balance of country 1 , but with opposite sign.

CASE 2.

Multipliers applicable to an autonomous change in the demand for imports in Country $2(\Delta \mathrm{M} 2)$

This is the same thing as an autonomous in Country l's exports. Its effects can be derived by setting $\Delta \mathrm{C}_{1}=0, \Delta \ddot{\mathrm{I}}_{1}=0 . \sim \Delta \mathrm{M}_{1}=0, \sim \Delta \mathrm{C}_{2}=0 \sim \Delta \mathrm{I}_{2}=0, \sim \Delta \mathrm{G}_{1}=\mathrm{o}$ and $\Delta \mathrm{G}_{2}=0$ in equations (3.15) and (3.16) and solving the resulting equations for $\Delta \mathrm{Y}_{1}$ and $\Delta \mathrm{Y} 2$. This yields

$$
\begin{align*}
& \left.\left[\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)\right] \cdot \Delta \mathrm{Y}_{1}=\overline{\Delta M}_{2}+\mathrm{m}_{2}\left(1-\mathrm{t}_{2}\right) \cdot \Delta \mathrm{Y}_{2}\right) \tag{3.21}\\
& {\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right] \cdot \Delta Y \cdot\left(1-\mathrm{t}_{1}\right) \cdot \Delta \mathrm{Y}_{1}-{\overline{\Delta M_{2}}}_{2}} \tag{3.22}
\end{align*}
$$

or

$$
\Delta Y_{1}=\frac{1-\frac{m_{2}\left(1-t_{2}\right)}{t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)}}{t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)-\frac{m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)}{t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)}} \cdot \Delta \bar{M}_{2}
$$

$$
\begin{equation*}
\Delta \mathbf{Y}_{1}=\frac{t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)-m_{2}\left(1-t_{2}\right)}{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]\left[m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)\right.} \cdot \overline{\Delta M_{2}} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{aligned}
\Delta Y_{2}= & \frac{m_{1}\left(1-t_{1}\right)}{t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)} \cdot \\
& \cdot \frac{\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{2}\left(1-t_{2}\right)}{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)} \cdot \overline{\Delta M_{2}-} \\
& -\frac{1}{t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)} \cdot \overline{\Delta M_{2}}
\end{aligned}
$$

$$
\Delta \mathbf{Y}_{2}=\frac{\overline{\mathrm{M}}_{2}}{\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)}\left\{\frac{\mathrm{m}_{1}\left(1-\mathrm{t}_{1}\right)\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right]-\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{1}\right)\left(1-\mathrm{t}_{2}\right)}{\left[\mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{2}\right)\right]\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)-\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{2}\right)\right.}-1\right\}
$$

or

$$
\begin{equation*}
\Delta \mathbf{Y}_{2}=\frac{m_{1}\left(1-t_{1}\right)-\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right.}{\left.\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\right)\left(1-t_{1}\right)\left(1-t_{2}\right)} \cdot \overline{\mathbf{M}_{2}} \tag{3.24}
\end{equation*}
$$

The effect on Country Γ s trade balance is given by

$$
\Delta \mathrm{B}_{1}=\Delta \mathrm{X}_{1}-\Delta \mathrm{M}_{1}=\Delta \mathrm{M}_{2}-A \mathrm{M}_{1}=\mathrm{m}_{2}(1 \sim \mathrm{t} 2) \cdot \mathrm{AY} 2+\Delta \mathrm{M} 2-\mathrm{m}_{1}\left(1-\mathrm{t}_{1}\right) \cdot \Delta \mathrm{Y}_{1}
$$

Substituting the values of $\Delta \mathrm{Y}_{1}$ and $\Delta \mathrm{Y}_{2}$ from equations (3.23) and (3.24) we have

$$
\Delta \mathrm{B}_{1}=\overline{\Delta \mathrm{M}}_{2}\left[1+\frac{\mathrm{m}_{2}\left(1-\mathrm{t}_{2}\right)}{\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)} \cdot\{\right.
$$

$$
\left.\frac{m_{1}\left(1-t_{1}\right)\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)}{\left.\left[t_{1}+s_{1}\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\left(1-t_{1}\right)\left(1-t^{2}\right)}-1\right\}-m_{1}\left(1-t_{1}\right) .
$$

$$
\left.\frac{\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)-m_{2}\left(1-t_{2}\right)\right.}{\left[t_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)\right]\left[\mathrm{t}_{2}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)\right]-\mathrm{m}_{1} \mathrm{~m}_{2}\left(1-\mathrm{t}_{1}\right)\left(\mathrm{I}-\mathrm{t}_{2}\right)}\right]
$$

$$
\begin{gathered}
\Delta B_{1}=\frac{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]+m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)-m_{2} \cdot\left(1-t_{2}\right) .}{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-\left(m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)\right.} . \\
{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)+\right.} \\
+\frac{-m_{1}\left(1-t_{1}\right) \cdot\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right.}{\left[t_{1}+\left(s_{1}+m_{1}\right)\left(1-t_{1}\right)\right]\left[t_{2}+\left(s_{2}+m_{2}\right)\left(1-t_{2}\right)\right]-m_{1} m_{2}\left(1-t_{1}\right)\left(1-t_{2}\right)} \cdot \overline{\Delta M_{2}}
\end{gathered}
$$

Now, if we put

$$
\begin{align*}
& \mathrm{t}_{1}+\left(\mathrm{s}_{1}+\mathrm{m}_{1}\right)\left(1-\mathrm{t}_{1}\right)=\mathrm{A} \\
& \mathrm{ta}+\left(\mathrm{s}_{2}+\mathrm{m}_{2}\right)\left(1-\mathrm{t}_{2}\right)=\mathrm{B} \tag{3.26}\\
& \mathrm{~m}_{1}\left(1-\quad \mathrm{t}_{1}\right)=\mathrm{C} \\
& \mathrm{~m}_{2}\left(1-1_{2}\right)
\end{align*}
$$

we have

For case 1:

Multipliers applicable to an autonomous change in domestic investment in country $1\left(\Delta I_{1}\right)$.

The types (3.18), (3.19) and (3.20) become,

$$
\begin{equation*}
\Delta Y_{1}-\frac{\mathrm{B}}{\mathrm{~A} \cdot \mathrm{~B}-\mathrm{C} \cdot \mathrm{D}} \cdot \overline{\Delta \mathrm{I}_{1}} \tag{3.27}
\end{equation*}
$$

$$
\begin{align*}
& \Delta \mathrm{Y}_{2}-\frac{\mathrm{C}}{\mathrm{~A} \cdot \mathrm{~B} \cdot-\mathrm{C} \cdot \mathrm{D}} \cdot{\overline{\Delta \mathrm{I}_{1}}}^{\text {and }} \tag{3.28}\\
& \Delta \mathrm{B}_{1}-\frac{\mathrm{C}(\mathrm{D}-\mathrm{B})}{\mathrm{A} \cdot \mathrm{~B}-\mathrm{C} \cdot \mathrm{D}} \cdot{\overline{\Delta \mathrm{I}_{1}}}^{2} \tag{3.29}
\end{align*}
$$

For case 2 :

Multipliers applicable to an autonomous change in the demand for imports in Country $2(\Delta \mathrm{M} 2)$

The types $(3,23)$, (3.24) and $(3,25)$ become,

$$
\begin{equation*}
\Delta Y_{1}=\frac{B-D}{A \cdot B-C . D .} \cdot \overline{\Delta M_{2}} \tag{3,30}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathrm{Y}_{2}=\frac{\mathrm{C}-\mathrm{A}}{\mathrm{~A} \cdot \mathrm{~B}-\mathrm{C} \cdot \mathrm{D} .} \cdot \overline{\mathrm{M}}_{2} \tag{3.31}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathrm{B}_{1}=\frac{(\mathrm{A}-\mathrm{C})(\mathrm{B}-\mathrm{D})}{\mathrm{A} \cdot \mathrm{~B} \cdot-\mathrm{C} \cdot \mathrm{D}} \cdot \overline{\Delta M}_{2} \tag{3.32}
\end{equation*}
$$

4. REFERENCES

Branson W, H. \& Litvack J. M. (1972) «Macroeconomics» A Happer International Edition
Evans M.K. (1969) «Macroeconomic Activity» A Happer International Edition
Harcourt G, C - Karmel P. H - Wallace R, H (1968) «Economic Activity» Cambridge University Press
amuelson P,A (1972) «Economics» Mc Gram - Hill eighth Edition Smith W.L. (1970) «Macroeconomics» R.D. Irwin inc Illinois

