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One of the first things to learn in statistics is that the coefficient of determi-
nation, R?, by definition takes values always in the closed internal [0, 1]. Occasio-
nally, however, one is puzzled by a computer output reporting negative R?. How
should this be interpreted? Is it an indication that the model fits data poorly? If
so, in which direction should the model be modified? Or is it due to rounding»
errors and the near singularity of the observation matrix? Moreover, can this
reasoning sufficiently justify values of R? equal to —19.7?

These and other more wild guesses can create, at least, great discomfort and
uncertaintly. Initially, the whole affair is viewed as a mere curiocity and is asserti-
vely attributed to rounding errors and the ill-conditionality of the observation
matrix. As, however, the frequency of negative R? increases, so does the mistrust
and skepticism (both exhibit a very strong positive correlation with the frequency
of negative R? appearances); more fundamental but as yet unintelligible deficien-
cies of the statistical package are thought to be the villains. Gradually, one reaches
a state of absolute mistrust for the package and adopts a nihilistic attitude, coupled
with a scornful tone rowards the estimates. Lacking, however, any alternative,
investigatorswilly-nilly accept whatever the computer grinds out. The cynics among
them either report bluntly the negative valued coefficients of determination, or
they opt not to report this statistic at al. Others, in an obscure footnote akno-
wledge their incomprehention and desparation while they appeal apologetically
to some higher authority. Neither however can come to grips with the invisible
forces that are operating behind the scenes. The ensuing paragraphs offer a reso-
lution to this unfortunate state of affairs and a boost of confidence for the esti-
mates.
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The most widely used econometric package is the Time Series Processor
(TSP). It was developed in the mid-sixties at the University of Chicago, but since
then it has undergone substantial revisions pua extensions, keeping pace with the
fvolution of econometric thinking.

TSP calculates the coefficient of determination using the formula R2,, =

e'e
== 1-— ———where Y'AY/N denotes the sample variance!,2 of the dependent va-
Y'AY

riable Y and e = Y — Xb. (Cooper 1973, Hall and Hall 1980). As it will be shown
shortly, this formula is responsible for the «perverse» behavior of R2rsp since
it is inappropriate when a constant is not included among the regressors. In this
case R2rsp underestimates the proportion of the variance of Y explained by the

Sy
meodel. Furthermore, the closer the coefficient of variation of Y (defined as Cy = —

Y

is to zero, the greater are the chances that2ysp takes on a negative value. It is proved
that R2ysp takes values in the half-closed interval (—eo, 1], i.e. it does not pos-
sess a lower bound.

Let that the linear model Y= ibg+ Xb--e (1) is fitted to the N. (K- 1) —di-
mensional observational matrix (Y, i, X). e, the residual vector, is by construction
orthogonal to all regressors; (i" x")e = 0. This orthogonality property cf e faci-
litates the decomposition of the variance of Y into two parts, one «explained»

1. A —=1T-ii/N stands for the idempotent linear operator that transforms the original ob-
servation matrix into deviations from its sample mean (see Theil, pp. 12 - 14).

2. The reason for using R21gp instead of R2= b'x’Axb/y’AY is that the value of e'e is
needed anyway in the computation of the covariance matrix, F - statistics etc., whereas the value
of b'x’Axb is not used elsewhere in the calculations, To use R27sp instead of R2 is therefore
more economical in computer money.

384



by the model and the residual variance, ie. Y'AY = b'x’Axb - e‘e. Hence,

2 e’e
Ropgp —RZ =1—

Y'AY

If instead, we fit a linear model differing from (1) only in that it does not contaiu
a constant, i.e. Y= Xbg-}-¢o (2) the variance of Y will be decomposed asfollows:

Y'AY = by’X'AXbg + €'9— Neo? (3)where ey denotes the sample mean of the
residual vector 3. From (3) an explicit relation between R2 and R23yp can be derived;

3 Ne.?
namely, R2= Roygp +—
Y'AY

(4) We see, therefore, that the omission of the con-

stant from the regression gives rise to the emergence of a wedge between the sample

- —_— 2 . ;
value of the coefficient of determination and R,.,; consequently R2is underesti-

mated by an amount that varies inversely with Cy.

A diagram might help clarify the preceding arguments. Let that models (1) and (2)
one fitted to the scatter {(X;, Y;)}. Evidently, the second model fits the data poorly
and is characterized by a relatively low R2. Let us now make the following thought
experiment: from each Y, subtract a constant Ye, to obtain a new scatter denoted
J(x; y—¥e)}.Choose Yein such a fashion that models(1)and(2)both fit the transformed
sample equally well, i.e. if model(1) is employed it will yield a zero estimate for the
coefficient of the constant. (It is trivial to show that such a value of Ye always
exist, and is equal to Ye = bg). The estimates of model (1) are invariant under
this affine transformation of the sample.

A cursory inspection of the diagram reveals that as Y. increases, the fit of
model (2) deteriorates. A measure of how poorly model (2)fits the data is the absclute

3. In model (3) it is not usually the case that i'e = 0. This implies that except for a set of
measure zero, Aec=€,, so that model (3) cannct be brought into the form AY = AX - e,.
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value of the sample mean of the residuals, i.e. the systematic influences on Y that
are incorporated in the random variable. As Igollincreases, the wedge between R2

and R2 widens (see eq. 4). The two samples [(X;, Y;)] and [(X;, Y;— Ye)] ho-

TSP

wever, differ only in the mean and the coefficient of variation of the dependent

: T 2 . ;
variable, Y. An inverse association between Cy and (R?—R,,) is thus evident.

To express this relation analytically note first that By T X'by =

= [1 — X' (x'x)-'xi]Y¢, and
S . — B N
e =[1— X(XX)IXiR(Ye/YRY = x202Y2.

Therefore, N & [Y'AY =x22Y2/S2y =x202/Cy

This expression can be exploited in the construction of rather sharp and effective

2

2
namely: —«2A2/C. = R, = 1— KZM/Ci,. Since Cy can take

bounds for R’ 6 =

TSP ?
S 5 2

on any arbitrarily small positive value, R, cannot be bounded below. Furthermo-

re, the smaller the value of Cy, the greater the possibility, ceteris paribus, that

2

R

rgp Decomes negative.

2

A negative valued R, o, means that a much better fit and superior expla-

natory power could have been obtained if a constant were used as the sole regres.
sor. In other words, the sample mean of Y contains valuable information about
Y}, since the bulk of the observations is clustered around it. Consequently, the

modification that the model is asking for in the presence of a negative valued R 5

is obvious: Relaxation of the constraint by = 0.
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When does the problem arise?® Usually, when theoretical and a priori consi-
derations suggest that a constant should not be used; more often, however, when
the regressors are transformed in the presence of heteroscedastic terms. In this
case the constant term of the original model disappears. What should be done
then; Ideally, the procedure used to calculate R2 should be appropriately modi
fied. If this is not feasible (and usually it is not, or it is a rather costly endeavor)

2

Rszp should be interpreted as a lower bound of R2. Provided that R, is rela-

tively high and positive, this is a satisfactori procedure, If, however, R2rsp negative,

it should be ignored, with a concomitant loss of some valuable informaticn.

; ¢ . . 2
In the case of instrumental variable estimation negative valued R, can make

their appearance even if a constant is included among the regressors. There is
nothing perverse in that. TSP calculates the coefficient of determination using the

structural residuals, e=Y — x(x¢x)A-1 xA’Y, and not the ones obtained atthe second

stage of the iteration, e =Y—x ():' )Q)-i’;;'y. The mean of the structural residuals

however, is not necessarily zero (i.e. in general i'e = 0— i'é). The residual variance
e'e

is calculated in TSP from — and not from e’Ae=e’e— (i'e)?/N, as it should.
N

Hence, the unexplained variance is overestimated while R2ysp is disproportionally
underestimated. Using the preceding methodology one can establish that

2 S R ; -
—m2q?/c?y <R ¢, < 1—m2g?/c?y, ie.in instrumental variable estimation the

4. Rounding errors can very well reduce Y'AY disproportionately and give rise to negative
valued R21gp. In this note however, we concentrated on only two, but certainly the most frequent
source of high (in absocute terms) negative values for R27gp.

5. As in the case of ordinary least square, statistical inference should be carried out using
the structural (¢) and not the second stage (¢) residuals.
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coefficient of determination does not admit a finite lower bound. What actio:
should be taken in the presence of negative-valued coefficients of determination
The answer remains unchanged: this statistic should be ignored. After al, the coeffi
cient of determination, adjusted or not, is not the decisive criterion in performin
specification analysis.
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