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We consider here the question of existence of a solution in a finite horizon,
continuous model of optimal growth. Infinite horizon models with no solution
have been discussed in the literature and there has also been some discussion of
finite horizon models.

For the case of infinite horizon modds intuitive explanations for the lack of
a solution have, in some cases, been provided. The models might be such that we
require to be able to dice a fixed quantity into equal parts and distribute it over
an infinite horizon, which is impossible. Or they might be such that the
unboundedness of the fdicity function and the production function, and the lack
of a podtive rate of pure time preference imply that consumption is postponed
forever (for example, [1]). For modes with these characterigtics, the lack of a
solution does not depend on whether the formulation is that of discrete or
continuous time.

The following are examples of infinite horizon models without a solution.

(i) The optimal consumption of a stock.

Continuous Model 1 Discrete Model 1
Maximize | :logc(t) dt Maximize ‘E:’ logce;
i=
Subject to - Subject to
| o) di=W, 2% ci=W,

i=0
C(t)ZO, WG>0 CiZO, WO>0
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where W, is the stock of a good at time 0 and ¢ (t), ¢; consumption at time t
and i.

Now it is easy to see that if instead of an infinite horizon we had a finite
horizon the unique solution would have been

Wo

c(t)= i
(t) T T+1

for the continuous and discrete models respectively. On the other hand as T=> o
we obtain the warst possible path of zero consumption and hence no solution
exists for either problem.

The reason is that although we can divide W, in equal parts over a finite
period we cannot do so when the horizon is infinite. The attempt to obtain such
a division results in the worst possible path of zero consumption.

(i) A model with production.

Continuous Model 2 Discrete Model 2
Maximize | 6” loge (t) dt Maximize logc;
i=0
Subject to ¢ (t)+k(t)=bk (t) o+ ko=Wp
¢ (t)=0, k(t)=0 ¢ +kj=bko+ko
D

c;+kij=bk;_;+ki_;
¢;=0, k=0, Wy >0.
where W, is the initial level of capital stock, the positive constant b is the

output — capital ratio, c (t), ¢; are consumption at time t and i and k(t), k;
capital stock at time t and i.

Now for finite horizon T the unique solution is

k .
k(t)=(ko— k,[? t) e k= T" (T—-i) (1+Db)
c(t)=$ﬂ L ci=—l;f-- (1+b)

Ko= —o— W

T+1



for the discrete and continuous models respectively.

On the other hand as T=>o0, ¢ (t) and c; tend to zero. The fact that the
felicity function, logc (t), and the production function, bk(t), are unbounded
implies that consumption is postponed in terms of the infinite future which never
comes. There is no terminal period over which the benefits from the earlier
postponement of consumption can be reaped and hence there is no solution to
either problem.

For the case of finite horizon continuous models conditions for the existence
of optimal paths have been discussed in [2]. The discussion here is intended to
supplement the analysis there.

Of cource, finite horizon models of a discrete formulation will always have
a solution. This is due to Weierstrass theorem, that a continuous function on a
compact set attains its maximum. One can then trace the lack of solution in a
finite horizon continuous model to the fact that the conditions of the Weierstrass
theorem are not satisfied.

A continuous model can also be viewed as the limit of a sequence of discrete
models. This enables us to obtain an intuitive explanation why in some finite
horizon continuous models a solution fails to exist. The limit of the solutions of
the models in the sequence is not available.

The discussion here is in the context of a simple model. However, it will be
evident that a similar explanation can be provided in more general models.

Consider the following optimal growth models:

Continuous Model 3 Discrete Model 3
Maximize | gc(t) dt Maximize o+ ) +Cy+ ... +Cp_
Subject to Subject to

¢ (t)=bk(t)—k(t) co+ko=W,

c(t)=0 k(t)=0 c;+k;=bky+kq

k(0)=W,, k(T)=0 ¢y +ky=bk; +k,

cr_1=bkr_s+kr_»
¢;=0, k=0
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where ¢ denotes consumption, k capital stock and W, is a positive constant. In
the discrete model, cr_;, the quantity of the good allocated to consumption at
T—1 is to last for the period [T—1, T] and hence the length of the planning
horizon is in both cases T.

Consider first the discrete model. Irrespective of the value of b, it has a
solution. For b<0 the solution is ¢;=W;, and ¢;=0 for i=1, 2, ..., T—1.

For b=0 any vector of c;'s which satisfies the constraints, is a solution. For
b>0 the solution is ¢;=0 for i=0, 1, ..., T—2 and cy_; =W, (b+1)T-L

These solutions are explicitly derived in Appendix I.

Assume now that the time period between decisions becomes shorter and
shorter. As we truncate the intervals further and further, the same kinds of
solutions are obtained. Of cource the shorter intervals will imply that for b<0
the quantity W, in the first period and for b>0 the accumulated quantity of the
good in the last period must now be consumed at a faster rate. The limit of these
rates, as the distance between decision points tends to zero, is infinity. As we shall
see, this has implications for the solution of the continuous model.

Next we consider the continuous model. Application of the Euler equation
of calculus of variations implies that we require

b+—9 1=0
at

For b=0 the Eulerian relation imposes no restriction and any feasible path
is a solution. On the other hand for b# 0 there is no solution.

We shall now view Continuous Model 3 as the limit of a sequence of discrete
models, as the interval between decisions tends to zero. This will provide an
intuitive explanation why a solution fails to exist.

In Discrete Model 3 above intevals are of unit length and one possible
interpretation of this model is as follows. A quantity of the good, c, is
allocated to consumption at the beginning of period t and it is to be consumed
at a constant rate throughout the period. This constant rate of consumption yields
a constant utility rate, u(c,), which integrates over the unit interval to u(c,). In
our model u(c,)=c,.

Now suppose that decisions are taken at intervals of half the time unit, rather
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than at intervals of one time unit. In order to allow for comparisons, ¢, denotes
again consumption per unit of time. A typical production constraint is now

1 1
-_Z_CH% + kH_; =3 bk, +k,.

The contribution of this consumption decision to the utility sum is %ct.

For the case when the interval between consumption decisions is At Discrete
Model 3 is replaced by

T
——1
At
Maximize Xc; At t=1At
i=0

Subject to
CoAt + kO = Wﬂ

Cosac At+kpy o =bk At+k,

................................. sesee

c At=bk At+k
I _ o T

T
—=1 g
At At At 2

Cis ki =0

Consider now the case b<0. Irrespective of the value of At the solution will

w
be to consume everything in the first period and ¢,=—>. The consumption rate

depends on At and lim cy=occ. Hence in the limit no solution exists. On the
At=0
other hand as At=>0 we capture the continuous time problem. Therefore we have

provided an intuitive explanation why for b<0 the continuous model has no
solution,

Consider next the case b>0. For given At the solution to Discrete Model 3 is
Loy
A

-2 and . =W, (bAt+1) l and as At=0

- . I
¢;=0 for 1—0,...,At

& 2 At Sy (a iE ’ 2
consumption is postponed for the last point in time T. This explains why for b>0
there is no solution to the continuous model. It is not possible to consume at
an instant a finite amount ¢y =W, €"T no matter how high the consumption rate
is.
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It is now evident why for b# 0 a solution to the continuous model will fail
to exist. Infinite consumption rates are not available. Of cource for b=0 the
situation is completely analogous to the one in the discrete case. Any feasible
allocation of W, gives utility W,.

Next we show that the values of the utility integral have as supremum W,
when b<0 and W, T when b>0. Of course the supremum cannot be attained.

First consider the case b<0. It is easy to check that the following sequence
of pairs of paths in feasible

<Wo
Kk, (t)=Wo—nt ¢ (t)=(Wy+n)—bnt for t='n— <T

WD
k,(t)=0 c,(t)=0 for t>—
n

where integer n=n, and bW,+n>0.

The implied sequence of values of the utility integral is

W, W,
f bnt? —q{
; ((bWo+n)—bnt} dt=[(bWo+n) t —- I, =
0
(bW, +n) Vo _ DB w"z-w b W w

ot Wty o<W

and tends to W, as n=o . On the other hand there does not exist a feasible
pgir which gives utility W,. To see this consider any feasible path c¢(t)=bk(t)—
k(t). The corresponding value of the utility integral is, for all T,

| (Bk(t)—kt) di=| 5 bk(t) dt—Kk(T)+W,<Wo
since b<0.
Second consider the case b>0. The following pair

k(t)=W, e c(t)=0 for t<t

1 Wyebr 1 W, ebr W, eb*
= o R Ol | il bl—1) o __— 0 Pyl bl
k(t)=(Wye T T—x1 )e +I T—x c:(t)—T . for t=<t=T
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is for sufficiently large t* and for all t=1* feasible, i.e. k(t)=0.
The corresponding utility integral is

dt =W, eb"
Tt T—x v

f

and tends to W, e°T as 1=T.

Next we show that there is no feasible path which gives utility W, e*T. The
value of the utility integral corresponding to feasible c(t) is

f :(bk(t)—Ht)) dt= | ;]rbk(t)dt—k(T)+W0<~W0+W0 €T —K(T) + Wy < W, €T

The only case where the strict inequality above does not hold is when c¢(t)=0
but then the value of the utility integral is zero.

Alternatively, Appendix II shows that if, for either b<0 or b>0, path k(1)
is proposed as optimal it is possible to find k!(t)=0 such that

i OTb(kl(t)—k(t)) dt>0 and c!(t)=0.

As to a more formal mathematical explanation, lack of compactness of the
relevant set in an appropriate topological space allows for the possibility that the
utility integral does not attain a maximum.

Suppose the consumption paths are also required to be continuous and
consider the space C[0, T] of all continuous real valued functions on [0, T] with
norm | [f| | =sup {If(t)| : te [0, TI}. Clo, T) is a normed linear space and
the utility integral is a bounded linear functional on this space and therefore
continuous. On the other hand the set of feasible consumption paths is not
compact in this space, i.e., not every sequence of feasible consumption paths
converges to a feasible limit path.

We establish the lack of compactness by considering the feasible pair
Ki(£)=Woe ™, c,(t)=(b+mn) Woe ™

where integer n=ny>b. The sequence <c,(t)> has ||c,||=(n+b) W, and
therefore it does not contain a convergent subsequence.

Finally, lack of solution could appear also in more general formulations. For
example, in the model above the presence of a discount factor e~%, with §>0,
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would imply that a solution exists only for b=8. For b<§ it is not possible to
consume W, at t=0 and for b>8§ it is not possible to consume W, e* at t=T.
Also a more general production function f (k) with f’(k) >0 could have been used,
Again the continuous model can be viewed as the limit of a sequence of discrete
models and an explanation for the lack of solution can be provided. Infinite

consumption rates are not available.

In this appendix we obtain explicitly the solution to Discrete Model 3 which
is of course a linear programming problem with equality constraints. For

APPENDIX I

concreteness we take T—1=35.

We have

Primal:

Maximize

Subject to

and
Dual:
Minimize

Subject to

Co+Cp+Cy+C3+Cy+Cs+ 0Ky + 0k, + 0k, + 0k3 + 0ky

co+ko=W,
c+ki—(b+1ky=0
c+ky—(b+1)k; =0
c3+ky—(b+1)k;=0
cstks—(b+1)k;=0
cs—(b+1)k,=0

c;=0, k=0

c=py Wy

pogl, p]ZI’ p2219

po—(b+1)p;=0 Pi—
p;—(b+1) p3=0 Pi—

ps—(b+1) ps=0

+Po
‘P
‘P2
* P3
P4
: Ps

p321! p421,
(b+1) p,=0
(b+1) p,=0
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First we consider the case b=0. Any ¢y, ¢, ..., C5, With the corresponding k,, k;,
ks, k3, kg, which is feasible and sums up to W, is a solution to the primal. The
solution to the dual has py=1 and all other p;'s can be set equal to 1.

Second we consider the case b<0. Now it does not pay to postpone
consumption beyond the first period. The solution to the primal is cy=W, and
all other ¢;’s and all k;’s equal to zero. The solution to the dual has py=1 and
other p;’s can be chosen to increase in a way that satisfies all constraints.

Finally we consider the case b>0. It now pays to postpone consumption up
to the last period. The solution to the primal is cg=...=c4=0, cs=(b+1)’ Wy,
k,=W, (b+ 1)}, for t=0, ..., 4. The solution to the dual has p,=(b+1)° and the
other p;’s can be chosen to decrease in a way that satisfies all constraints.

For completness we mention that if the number of periods is infinite the case
b=0 and b<0 still have an optimal ¢, sequence. On the other hand b>0 implies
that no optimal consumption sequence exists. Consumption gets postponed for
ever.

APPENDIX II
In this appendix we show that, for bz 0, if (c(t), k(t)) is proposed as an

optimal pair we can always construct feasible (c'(t), k' (t)) which gives a higher
utility level. Hence the original assumption is incorrect and no optimal paths exist.

Let c(t)=bk(t)—k(t) be the path proposed as optimal and
¢! (t)=bk!(t)—k'(t) a feasible path which will be constructed to overtake c(t).

Comparing the utility integrals we have

| g e(t)dt—| :;c’(t) dt={ b(k(t)-k' (1) dt—| [ (k(t)-K! (1)) dt=
{4 blk(t)—K!(1)) dt

where the last equality follows form the fact that

| g (k()=K (1)) dt=Ik(t)— K (t)] ) =0

since both k(t) and k'(t) start at W, and k(T)=k! (T)=0, by assumption.
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Now for path c!(t) to overtake path c(t) we require

{0 (k(D-k(1)dt>0 if b>0 and | 7 (K'(t)-k(1))dt<0 if b<O.

This is always possible to achieve in both cases. If b>0 consumption can
be postponed initially and then in a shorter period the accumulated k!(t) can be
consumed in such a way so that | g(k‘(t)—k(t}) dt>0. On the other hand if
b<0 the inequality | :(k‘(t)—k(t)) dt<0 can be satisfied by keeping k'(t)
below k(t). At the same time we can have c(t) feasible.
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