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ABSTRACT

A macro model for the balancing of the media budget, reach and frequency
in marketing communications is presented. The model is solved for optimal
policies under four distinct decision environment scenarios. The first scenario
assumes that the media budget is given and the objective is to optimize the balance
between reach and frequency. The second assumes that frequency is fixed and the
objective is to select the optimal budget and the corresponding reach. In the third
scenario it is assumed that management did not make prior commitments and the
objective is, therefore, to optimize the media budget and the balance between
reach and frequency. In the last scenario, the case of fixed reach with the objective
of selecting the optimal budget and frequency levels is considered. Numerical
examples are utilized throughout the discussion to demonstrate how the suggested
model may be applied.

INTRODUCTION

The goal of marketing communications is to influence the attitudes and/or
purchase behavior of a targeted market segment. In advertising campaigns of a
given media budget, two of the key factors that determine the degree to which
this goal is attained are the media budget, the advertisements' reach and their
frequency. Media budget is the sum allocated for the purchase of media space
or time and does not include other non-media expenses.



Reach is the proportion of the targeted population that is exposed to a
particular combination of media during a specific period [7, 20]. Defining reach
as such, one refers to "effective" reach as the percent of target audiences reached
at each effective level of advertising frequency [30; p. 34]. Finaly, total reach
is simply the number of people exposed to an advertising message at least once
[2, 19]. In direct mail campaigns, reach is represented by a mailing list. In mass
communications, reach is represented by the total unduplicated audience of al
media employed.

Freguency refers to the average number of times the targeted audience is
exposed to the same advertisement during a specific period [7, 20]. However, one
refers to "effective” frequency when various degrees of advertising repetition are
more (or less) effective in communicating a brand's advertisement or selling that
brand [30; p. 331. In other words, vehicle exposure is a "necessary but not
sufficient” condition for advertising exposure, and effective frequency should be
evaluated in terms of advertising exposures or communication effects rather than
vehicle exposures [13]. A follow up study of [13] found that, in practice, most
media plan evaluations inflate estimates of effective reach. This implies that when
media schedules are evaluated based on effective reach, media vehicle audience
ratings should be weighted [16]. The study makes the distinction between vehicle
and advertising audiences clearer. The assumption that one media vehicle exposure
equals one advertising exposure, simply does not hold [30; p. 361. Thus, a media
planner should know the number of vehicle exposures that equals the number of
advertising exposures.

It has long been recognized that the media budget, reach and frequency
interact in determining the effectiveness of an advertising campaign [1,2,4,6,8,12,
19,21,26]. Specificaly, since an advertisement can influence only those exposed
to it, its effectiveness is a function of its reach. Likewise, it is generally accepted
that the degree to which an individual is influenced by an advertising campaign
is a function of the number of times s/he is exposed to the advertisements.
However, given a fixed advertising budget, the only way to increase frequency
is by reducing the corresponding reach; and conversely, the only way to increase
reach is by decreasing frequency. Thus, in order to optimize the effectiveness of
a media plan, the proper balance between the media budget, the advertisement's
reach and frequency of exposure must be determined.

Two distinct approaches may be taken in designing models for the
communications problem outlined. First, one can take a micro approach. This
approach considers each communication situation as unique, and accordingly, calls
for the complete enumeration of all aternatives and their attributes; of al media,
their costs and audiences in one case, and of al potential customers and the
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potentia sdes to each customer in the other [28, 31]. Some technique is then used
in the determination of a particular communication plan. Second, one can take
a macro approach. Under this adternative the overall relationships among key
variables and the implications of these relationships are of interest [32].

As might be expected, the macro approach is applicable in the determination
of long range plans and in the design of communication policies. The micro
approach may be better suited for short term operational decisions.

Studies show, however, that there is a need for macro leve models. A 1975
study [29], indicated that only four percent of interviewed advertisers had indicated
the use of quantitative models in setting their advertising budgets. That was due
to the difficulty in obtaining the needed input for exiging models. Similar
observations were made with regard to industrial advertisers [18]. The importance
of applying quantitative modds in advertising budgeting is illustrated by more
recent studies [15, 23]. Specificaly, [23] found that a significantly greater
percentage (51%) of advertising managers were using more sophigticated techniques
in comparison to San Augustine and Foley's results [29]. In addition, Lancaster
and Stern, in a more recent study [15], showed that 75% of surveyed consumer
advertisers use computers in their advertising budgeting decisions, although they
suggest that some (77% of respondents) improvement, or much (4%) improvement
is needed in advertising budgeting planning methods currently used. They suggest
that budgeting programs should be more accessible and user - friendly [15].

The purpose of this paper is, therefore, to suggest a macro modd for the
communication problem outlined previoudy andto show how this modd facilitates
the formation of media policies and the setting of advertisng media budgets.

ADVERTISING MEDIA MODELS

Early models for media sdlection, such as linear programming, did not
digtinguish between reach and frequency, but considered instead the total number
of exposures [8, 9]. Such formulations assume that reaching, say, twenty
individuals once is as dffective as reaching four individuals five times. This
assumption has been rgected on both theoretical and empirica grounds [7, §].
Recognizing the digtinction between reach and frequency, Roth [26] suggested that
media should be scheduled so as to maximize gross rating point (GRP), subject
to minimum leves of reach and frequency. Since GRP is computed by multiplying
reach by frequency, it provides a measure of total exposure without drawing a
distinction between its two components. It is known that the early LP modes
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focused on measuring GRP's, dthough in a different context than the one utilized
in this paper. GRP's are used by 89.4% of advertisng agencies surveyed by
Kreshd et a. [13]. Furthermore, this model does not suggest how the minimum
levds of reach and frequency should be determined. Headen et al. [10] related
TV advertisng schedule varigbles to the attendant audience exposure pattern,
developing a probabilistic model. The same researchers and Bearden [5], later used
TV program ratings in a study of TV program exposure and attention. The study
produced two equations for predicting attentive audience delivery of television
advertisng schedules. The study's important focus was on audience attention
to TV programs instead of audience exposure to ads.

Advertising media models, applying to the one—media— vehicle situation,
were developed early. Agostini (1962) developed reach estimation methods [3].
Specifically, estimated reach was defined as

RN=RN _|+(] —RN—]) (a/Nb)

where N = insertions; a and b empirically derived coefficients [27; p. 8]. The use
of two or more media vehicles may duplicate advertising efforts by creating an
overlap in the audiences. The "Duplication of Viewing Law” developed by
Goodhardt and Ehrenberg for the U.K., in 1969, was extended by Headen et al.
[11] for the U.S. to include variables such as channel, program type, daypart,
repeat viewing, and program ratings.

Frequency of exposure modes were developed as well. Krugman [14] argued
that three exposures to an ad are necessary in order for an individua to be
effectively exposaed to it. Krugman's and other researchers models relied on the
effective - reach criterion. This criterion, however, has a mgor drawback. Some
individuals are exposed to the message an insufficient number of times and some
are exposed to it an excessve number of times. As a result, alocation of
advertising funds becomes ineffective. Extending the implications of this
observation, one can conclude that the distribution of exposure frequency is an
important variable for advertisng managers to consider while budgeting the
alocation of advertisng expenditures.

A multivariate extension of the beta distribution is known as the Dirichlet
distribution. The use of this distribution alows exposure to various vehicles to
be different, so relacing the population homogeneity assumption. Rust and Leone
applied the mixed-media Dirichlet multinomial distribution model on television
and magazines [28]. Their andysis indicated that different media effectiveness,
types of response, and degrees of interaction between the two components of this
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mixed-media schedule existed. Therefore, an integration of the media planning
function, which will adequately modd intermedia duplications between TV and
magazine schedules, is suggested. Lackenby and Rice developed a network
television exposure modd which used single - insertion audience data as its only
required input; the modd is named the beta- binomia distribution - limited data
model, BBD-LD [17]. That was found to produce the most accurate estimates
of reach (average error 3.23%) and frequency (average error 18.77%) than both
the beta binomial distribution indirect - estimation method and the univariate
binomia model.

MEDIA SELECTION MODELS

The development of media sdection models helps advertising managers sdect
the optical media schedules subject to budget constraints and vehicles
characteristics. Rust categorizes such models into three main categories:
mathematical programming, simulation, and heuristics [27]. The most advanced
of the media sdection modds employ advanced exposure estimation methods,
efficient heuristic search routines, and eassy to use decision support sysems with
advanced data base capahilities [27; p. 73]. These modds cdl for a complete
enumeration of al media to be consdered and the attributes of each media in
terms of its cogt and audience. In these moddls, frequency is taken to be a variable
which either directly or through intervening variables (e.g. through cumulative
exposure leve in the MEDIAC modd [19)]) influence the impact of advertisement
inserts. A response function is, then, entered to indicate that the margina impact
of an advertisement decreases with the number of exposures [4, 19]. One should
notice here that frequency is determined indirectly. Specificdly, successive inserts
in each medium are determined iteratively. A replication of an insert in a
previoudy sdected medium is treated as a new media option, abeit, with reduced
effectiveness. Once the complete media budget is exhausted, the media schedule
is complete and the average frequency can be computed [191.

The main advantage of the modds outlined is their ability to provide a short
term solution to the communication scheduling problem in a specific application
situation. Their main disadvantage is the need to provide a complete enumeration
of discrete alternatives; of dl available media and their attributes in one case,
and of al potential customers and their attributes in the other. The objective of
the model presented below is to formulate the macro relationship among reach,
frequency and the media budget as determinants of profitability and to derive their
optimum levels. The formulation contained herein is not in the spirit of LP
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modeling, as that was previoudy discussed. For the sske of brevity the modd is
presented in terms of the mass media problem.

MODEL FORMULATION

This section presents a mathematical macro model, defines its functional
components and suggests some functional forms for these components.

The objective of the model is to find the values of media budget, frequency
and reach which maximize the expected net gain to be generated by the advertising
campaign. Here, net gain is defined as total gross profits less the cost of
advertising. It should be noted, however, that other measures of effectiveness, such
as, total sales or recall, exist. In the opinion of the authors, net profit is the most
applicable measure of effectiveness in a macro model.

Letting G be the expected net gain to be maximized, it can be maximized
as a function of B—media budget, R — extent of reach, and F —— frequency of
exposure. Note that in this model, F is defined as a given frequency, or a
frequency to be determined. The net gain is given by: G=WI[(MR) f; (F)+M
(1-R) f, (0)] -B. The model, in other words, addresses itself to a single
population (e.g., a region, a nation, a city), without any consideration of
variations over time (e.g., seasonality, or trend).

Beginning at the individual customer level, let W be the potential contribution
to profit which the individual may contribute during the planning horizon. Let
f; (F) be the proportion of W expected to be realized. It is assumed that f, (F)
is a function of F, the number of times the individual is exposed to the
advertisements. Thus, the conditional expected contribution to profit of an
individual, given that s/he is exposed to the advertisements, is f, (F) W.

Turning from the individual customer to the total market, R is the proportion
of the targeted population reached by the advertisements. Accordingly, the
expected contribution to profits of a customer who is reached, is f; (F) W. Since
not all potential customers are exposed to the advertisements, the expected
contribution to profits of those not exposed is not ignored. This contribution can
be easily shown to be f; (0)(1 —R) W where f, (0) is the probability of sales to
those not exposed.

After rearrangement of terms, the above relationship can be summarized in
the net gain equation to be maximized: '



G=If;, FHR+f; (0)(1-R)] WM-B (§))
where M is the market size and all other variables are as defined above.

To this point we have defined the gain equation as a function of three
variables, i.e., F, B and R. We now show how these variables are functionally
related. This is done for two reasons. First, it facilitates an analysis of the
interaction between the variables in determining the net gain. Second, equation
(1) can be simplified by the elimination of one variable. Since, by definition, F
has to be an integer, and since for a macro model control over the budget is of
prime interest, we find it convenient to eliminate R.

As noted earlier, given a fixed budget, reach and frequency are inversely
related. We assume, therefore, that the budget available for exposing the
advertisements once to all those reached is B=zMRF, thus B=zMR for F=1.
It is recognized that this relationship may be difficult to apply in a macro model,
where frequency may be affected by audience duplications, in which case
frequency has to be interpreted as an average. In a macro model, however, where
particular media options are not considered, B/F may be considered an acceptable
presentation of the budget available per exposure.

It is generally accepted that reach is an increasing function of budget allocated
for media purchase. Accordingly, let R=f, (B,F) be a function of reach per
replication of exposure. Substituting f, (B,F) for R in (1) we get the general
bivariate gain equation:

G=I[f, (F) f, B,F)+f, (0) {11, (B,F)}] WM-B (2)
The functional forms of f; (.) and f; (.,.) are next discussed.

There is ample evidence to indicate that the impact of advertisements shows
diminishing return as the number of exposures increases [9, 20, 22, 25]. Following
published models for media selection which consider frequency [4, 19, 20], we
assume that f; (.) is the modified exponential function,

f, (F)=D—Ee—#F €))

where D is the saturation level of f, (.). Here it represents the maximum

share of a customer’s potential contribution which might be realized.

D—E is the value of f, (0) and is the share of a customer’s potential

contribution to be realized when s/he is not exposed to the
advertisements.



a is a parameter indicating how fast the function approaches its
saturation level.

Parameters D and E, controlling the upper and lower limits of the function,
are clearly dependent on the target market segments and the product line
advertised. The last parameter, a, was assumed to be relatively stable around 0.66
for perceptual measures of advertising effectiveness, such as recall. Ray and
Sawyer have shown, however, that this parameter may vary between 0.1 and
higher values, depending on the measure of effectiveness employed [25]. It should
be noted parenthetically, that Ray and Sawyer demonstrate how the parameters
of f; (F) can be empirically estimated [24, 25]. There is, therefore, no further
need to elaborate on this function. For illustrative purposes, the example utilized
in this paper assumes the following values: a=0.3, D=0.6 and E=0.54.

As noted earlier, reach is an increasing function of the media budget alloted
to each replication of exposure. It is generally accepted that above a certain level,
this function shows diminishing returns [4, 26]. The diminishing returns result
from advertising in less effective media in terms of the targeted market segments.
This becomes self evident when the standard cost per thousand of a medium is
adjusted to reflect the cost per thousand targeted audience. Before the point of
diminishing returns, some authors assume that the function shows increasing
returns due to the availability of efficient media which require substantial outlays
[18, 26]. Recognizing that for a micro model a different function might be
appropriate, f, (.,.) is assumed to follow -an exponential function,

f, (B,F)=1—e~<BF )

where ¢ is a parameter controlling the ascent of the function. This functional form
was found adequate by an analysis of the mean cost of major media classes in
relation to reach in particular markets. It was selected over more complex
functional forms since there is conflicting evidence with regard to the existence
of increasing returns [25]. To estimate c, the cost per thousand of major media
classes is adjusted to the cost per thousand targeted segments. Given a number
of such estimates, ¢ can be estimated by an appropriate curve fitting technique.
For illustrative purposes, in this paper, c=4x 10~¢ was assumed to give the best
fit for f, (.,.).



MODEL OPTIMIZATION

The conceptual model developed in the previous section can now be restated
as the following mathematical problem:
Maximize G where

G=If, (F) f, B,F)+f, (0) {1 -1, (B,F)}] WM—-B 5)

with F a positive integer. Substituting (3) and (4) into (5), we are faced with the
task of optimizing G where G is given by

G=[(D-Ee %) (1-e~*F)+ (D—E) e~ 8F] WM -B (6)

Four scenarios will be presented for this model. Each is presented below. Note
that in any of them, once an optimal solution is found, reach can be found by
solving (4).

Scenario 1: Fixed budget; find optimal frequency

In this scenario we will assume that the frequency F, is a continuous variable,
so that the optimal value of the neighborhood of F*|B can be determined. After
this is done, integral values of frequency in this neighborhood are evaluated to
determine the true optimal value (integral). After the optimal value of F given
B, noted F*|B is obtained, the evaluation of the integral values in the
neighborhood of F*|B follows. The derivative of G with respect to F, noted G’ (F)
is

G (F)=EWM [a e ?F — (cB/F?) e B/F — {3 — (cB/F?)} e~ aF —cB/F] )
Setting G'(F)=0 we note that F=(cB/a)!/? is a solution to equation (7). It may
be noted that as F approaches infinity G'(F) approaches zero and in the limit G
equals (D—E). The second derivative of G noted G"'(F) is given, after some
simplification, by:
G (F)=EWM [ —a? e 2F — (cB/F?)? ¢~ °B/F (8)
—(2cB/F?) e~ °B/F (e-2aF 1)
- (a - CB/FZ)Z e—aF- cB/F]

Evaluating at the point of interest, viz. F=(cB/a)'> we obtain after some
simplification (and letting (aBc)!/2=q),
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G” ((CB/a)lfl)mzaZ (aBc)~ 2EWM e—4 [1 —-gq—e9] )
[1—-(aBc)'2 —e—1]

which can easily be seen to always be negative for all values of (aBc)'/? different
from 1.

Thus the optimal value of F*|B equals (cB/a)!/? and is truly a local
maximum. A graph showing several iso - curves of B for selected values of F indica-
tes the general shape of the gain G; it is easy to note thatG is unimodal (see Figure
1). Selecting that budget which yields the highest value of G for any given F from
the second scenario, Figure 2 shows G as a function of F, given the corresponding
optimal budget. Figure 2 can be viewed as an envelope tangent to the budget
iso —curves presented in Figure 1. Again, here one can see that G reaches a local
maximum with respect to F.

A numerical presentation should be of interest at this point, based on data
provided in Table 1. For values of D=0.6, E=0.54, a=0.3, W=1, c=4x10"¢
and M=25x10% we also present values of budget B that would yield integer
values of F*|B, reach (from equation 4) and the optimal gain for some selected
values (Table 1).

For a budget of § 1,200,000 the gain is presented for various frequencies and
the corresponding reach. The optimal gain occurs when the frequency is four.

Scenario 2: Fixed frequency; find optimal budget

Herein we assume that F is fixed and that only B is subject to control. Firsily,
we obtain the derivative of G with respect to B, noted G'(B) which is obtained
directly from (6),

G’ (B)= —(c/F) e BF (U-8S) WM -1 (10)

where U=D—E and S=D—E e~ %, Setting G'(B)=0 and solving we obtain the
optimal value of B given F, viz.

B*|F= —(F/c) In (T) (11)
where T=F ((S—U) WMc)~ .

The second derivative of G with respect to B is noted G"'(B) and is given by
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G"(B):(CEWM/F) e—cBr’F (e—aF__ ]) (12)

which is clearly negative. Thus we have found the maximum. A graph showing
several iso—curves of F for selected values of B indicates the general shape of
the gain G; it is easily noted that G is unimodal (Figure 3).

Selecting the frequency which yields the highest value of G for selected
budgets from the first scenario, Figure 4 shows G as a function of B, given the
corresponding optimal F. Figure 4 can be viewed as an envelope tangent to the
frequency iso—curves of Figure 3. Again, it is clear that G reaches a local
maximum with respect to B.

A numerical presentation follows. For the (same) values of D, E, a, W, ¢
and M we present the optimal values of budget for various frequencies and the
associated reach and gain in Table 2. For a frequency of four the gain is presented
for various budgets. The optimal value of budget occurs at $ 2,244,310.

Some comments regarding the conditional optimizations seem appropriate at
this time. It should be noted that the conditional optimizations do not yield the
same results under any circumstances. Thus when F=4 is assumed as the driving
force the value of B=2,244,310 is obtained. When B=2,244,310 is driving force
the value of F=7.69 is obtained. These results should not be suprising if one
examines equations F*|B=(cB/a)!/? and B*|F= —(F/c) In [F ((1 —e?T) (¢cEWM))
—1] which is equivalent to equation (11). On the other hand, when F is allowed
to be a continuous variable, the maximax solutions derived by either approach
are the same. These maximax solutions are the optimal points of Figures 2 and
4. In this scenario, it was shown that a globally optimal solution does exist.

When F is indeed a constant, the solution was shown to be given by B*|F=
(F/c) [In {(S—U) WMc} —InF], which can be written as B*/F=F [K,InK,—
K;InFl, or B*|F=F[K,— K;InF], and for ease of notation, we let B*/F=6. Now,
when Fisarandom variable, with mean and variance E (F) and V (F)
respectively, the above solution is modified to recognize the random character of
the Frequency. In other words, E(8) and V(8) should be found, where:

E(0)=K, E (F)— K, E [F (InF)] (12a)
V(©®)=K, V (F)+K;2 V [F (InF)] (12b)

Let P (F) be the probability function of F. Thus the formulae for E (F InF) and
V (F InF) are originally presented.
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E (F InF)= kﬁo k Ink P (F) (12¢)

and -

E ((FInFR}= 3 (k Ink)? P (F) (12d)
=0

V (F InF)=E {(F InF)*] - E2 (F InF)

One can now note that when F=0 or 1, (F InF)=0, thus the lower limit of the
summations in (c) and (d) changes from 0 to 2. If, for example, we assume that
P (F) is Poisson distributed,

3 k Ink e~f fk/(k!)=fe~f 3 In (t+1) T,
= _ &

; :
where: T,=][ (f/j)=(f/t) T,_,, and T,=f, and
i=1

Ms

K2 (Ink)? e~T £%/(k!)=fe-T 3= (t+1) (In (t+ 1)) T,
- t=1

k=2

Il

Note that the following scenarios, 3 and 4, provide examples of bivariate
optimization, where one variable is continuous and the other is discrete.

Scenario 3: Budget and frequency unknown and subject to control

Herein both F and B are considered subject to control. The gain G is
therefore considered a bivariate function. The easiest way to perform the bivariate
optimization of this function is by means of conditional optimization. For the
moment we will assume F continuous. We will obtain F*|B and insert that value
into G thus reducing G to univariate function of B only. The optimal value of
B is obtained from the univariate G (B) function. This unconditional optimal value
of B is then used to obtain the optimal value of F given the optimal value of
B; this is noted F*|B* and thus we have the unconditional optimal values of B
and F. We then remove the continuity assumption on F and choose to examine
the integer values in the neighborhood of F* previously found. When examining
these integer values for G we calculate the associated values of B*/F from equation
(11) calculate the gain and choose the maximum of the two gains. The associated
values of B and F for the maximum gain are the true optima as far as the
necessary conditions are concerned. The values are checked for sufficiency
by means of second order conditions although from the Figures it is apparent that
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a maximum is achieved. Once F is given, one can obtain optimal B, or B*, and
R*, from which G can then be obtained (the maximized value of G).

The optimal value of F given B, is equal to (¢cB/a)'/2. Using this for F and
inserting it into the gain G (eq. 6), we obtain (given q=(acB)"/?)

G=WM [D+E e -2 E ¢9] (13)
Differentiating (13) with respect to B, we obtain
G'(B)= — 1+ WME (ac)‘*"z [(e—q_e—zq) B-172] (14)

setting (14) equal to zero allows one to solve for the optimal value of B
numerically. We note the optimal value as B*.

For the (same) values of D, E, a, W, c and M, we obtain, from (14), the
unconditional optimal budget B*=§ 3,201,930. From the relationship F*=
(cB*/a)"/? we obtain F*=6.53394. We now present the results for the integral
values of F in the neighborhood of F*, viz. 6 and 7 and also the above
unconstrained values.

Frequency Budget (§) Reach Gain (§)
6 3,024,810 0.867 8,243,650
6.53394 ; 3,201,930 0.859 8,263,340
7 3,346,780 0.852 8,250,060

Thus the constrained (integer F) solution occurs when the frequency equals 7.

Ordinarily sufficiency conditions for this third scenario would have been done
by comparing the second mixed partial derivative of G, which is given by

—cEWMF ! e~ B/F ((e-aF —1) F ! (cB/F — 1)—a e~ %F) (15)

and its square to the product of second pure partials given in equations (8) and
(12). The algebraic complexities dictate a numerical approach. A finite
approximation may be used with finite differences and substituting the following

(G (F+2AF)-2G (F+ AF)+G (F)) (AF) 2 (16)
for the second pure partial with respect to F, and

(G (B+2AB)—-2G (B+AB)+G (B)) (AB) 2 17)
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for the second pure partial with respect to B, and now noting G as a bivariate

variable,

(G (F+AF, B+AB)-G (F+ AF,B)-G (F, B+ AB) (18)
+G (F,B)) (ABAF) !

for the mixed second partial, then use these numerically as we would use the
partial derivatives above.

For the optimal unconstrained solution derived above, viz., F*=6.53394 and
B*=3,201,930, we let AF=F*x10"% AB=B*x 10 * and obtain the following
From (7), first pure partial with respect to F=0
From (12), first pure partial with respect to B=(1.95) 10~*

From (16), the second pure partial with respect to F= — 585,585
From (17), the second pure partial with respect to B=(—1.22) 10~¢
From (18), the mixed second partial of B and F= —0.29874

which clearly show F*, B* to yield a bivariate maxima for G.

In addition, a direct numerical approach is possible in that one would
calculate G (F*, B*) and then show that it was greater than all of the following
G (F*— AF, B¥*), G (F*, B*—AB), G (F*+ AF, B¥*) and G (F*, B*+ AB). Using
values of one percent, we obtain

Function Gain

G (F*, B $ 8,263,430
G (F* — AF, B¥) 8,262,930
G (F*, B*— AB) 8,263,030
G (F* + AF, B*) 8,262,938
G (F*, B*+ AB) 8,263,030

A review of the above provides clear evidence that G (F*, B*) is indeed the
optimal value of the gain equation.

Scenario 4: Reach is fixed; find optimal budget and frequency

Let us say that R=f, (B,F); F=f; (R,B), and B=f, (R,F). Then,
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G= If; (F) R+f, (0) (1-R)] WM ~B becomes:
G=If; {f; (R,B)} R+f; (0) (1-R)] WM-B,
or G=If; (F) R+f; (0) (1-R)] WM~—{, (R,F) (19)

If R is fixed, then two “sub—" scenarios are to be analyzed; specifically, solving
for F, and solving for B.

Solving for F

From (19) and given that f; (F)=D—Ee~2F, and B=zRFM, it is implied
that G=[(D—Ee ?F) R+(D—-E) (1-R)] WM -zRFM, thus Gy =[aERe F]
WM —zR, and setting this equal to zero, aERWMe 3 —zMR=0; e =
(zZRM)/(aRERWM) =z/(@EW) =Z. Therefore,

F*=—-(1/a)In Z (20)

(20) implies that F is independent of reach, since R is a constant. It does not
matter what the value of R is.

Solving for B

Since B=zMRF, F=B/(zRM). In addition, f, (F)=D—Ee %, Thus, G now
becomes: G=[(D—Ee~2/2RM) R 1 (D-E) (1-R)] WM—-B, and its first
derivative Gz =(a)/(zRM) REWMe~2B/2R — | which is set equal to 0, and solving
for B, one gets: —(aB)/(zR)=In [z/(aEW)]. Setting z,=z/(aEW), the solution is
a linear function of R:

B*=[(—2zR)/a] In (z;) (21)

DISCUSSION

The model presented in this paper provides a macro approach to the
communication scheduling problem. As shown in the previous section, caculus
can be utilized in providing optimal solutions under four decision environments.
The firg case assumes that management has aready decided on a media budget
to be expended. The objective of the modd is then to determine the optima
balance between reach and frequency, given the budget. In the second case,
management has dready fixed the frequency of exposure and the objective is to
determine the optimal budget and resulting reach. In the third case, management

2
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is open-minded with regard to budget, frequency and reach. In the fourth case,
management had the objective of sdecting the optimal budget and frequency,
given a fixed levd of reach.

It should be emphasized that only the third alternative provides an
unconstrained optimal solution. The other three provide optimal solutions
conditiona upon prior, non-optimal, decisons. It is therefore recommended that
the third scenario be followed whenever feasble.

The other three scenarios are provided in recognition of stuations which often
occur in practice. It is not uncommon to find a drict corporate - wide policy with
regard to advertising budgets which is based on different logic than the one
suggested; for example, setting advertising as a percentage of sadles. Given such
a policy, the firg scenario provides guidelines with regard to targeted reach and
frequency. It is dso not uncommon to have an advertising agency requiring a
certain leve of frequency. This is often the case in the introduction of a new
product, when it is fdt that a minimum threshold level of exposure is needed for
the creation of an initial impact. Under such conditions, the second scenario
provides the optimal budget and the resulting reach - a Smilar case with Scenario
4,

The model presented is applicable at the early planning stages of an
advertisng campaign. It facilitates the setting of an advertisng campaign. It
fecilitates the setting of a budget to be dlocated later to particular media options.
It aso suggests the leve of reach and frequency to be expected from the find
media schedule. Details, such as audience duplications, and minimum budget
alocations to media options, are not explicitly modeled. Since this is a macro
modd designed for policy rather than operationa decisons, the omisson of micro
details is judtified. It is, therefore, recommended that this mode be used in
conjunction with a micro model such as the one suggested by Little and Lodish
[19] for media planning or by Lodish [20] for sdes cdls planning. If the reach
and frequency of the resulted micro schedule widdy diverge from those suggested
by the macro model, one would suspect that either different response functions
were employed to represent the effects of repetition, or that the reach equation,
f, (.,.), does not adequately represent the attributes of the media options
ultimately considered. In the first case, corrective action is obvious, since there
iS no reason to assume different functions a the macro and micro models. In
the second case, one should check whether the media options sdected come from
media dasses usad in egtimating the parameters of the reach equation in the macro
model.
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The particular functiona forms employed for the effects of frequency, and
the extent of reach should not obscure the generdlity of the approach. These
functions have been suggested previoudy by others and were found appropriate
for the empiricd data considered by the authors. Similar optimizations may be
derived for the gain equation with other functions. If the mathematics gets to be
too difficult to handle, numerica methods may be employed.

TABLE 1
Budget ($'s) Frequency Reach Gain
(given budget) (in million $'s)
0 0 0.0 1.50
75,000 1 0.259 2.33
1,200,000 4 0.699 6.89
3,675,000 7 0.878 8.22
7,500,000 10 0.950 6.19
12,675,000 13 0.980 1.78
14,700,000 14 0.985 - 010
Optimal Gain
Frecuency Reach Gain (in Mill. $)

1 0.992 3.77

3 0.798 6.69

4 0.699 6.89

5 0.617 6.77

7 0.496 6.18

10 0.381 5.19
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TABLE 2
Frequency Budget Reach Gain
(given frequency) (millions $’s)
0 0 0.000 1.50
1 659,690 0.929 4,09
4 2,244,310 0.894 7.69
7 3,346,780 0.852 8.25
10 4,088,320 0.805 7.74
13 4,561,650 0.754 6.92
14 4,671,860 0.737 6.63
Optimal Value of Budget
Budget Reach Gain (mill. $)
0 0.000 1.50
500,000 0.394 4.71
1,000,000 0.632 6.46
1,500,000 0.777 7.33
2,000,000 0.865 7.67
2,244,310 0.894 7.68
2,250,000 0.895 7.68
2,500,000 0.918 7.66
3,000,000 0.950 7.46
3,500,000 0.970 7.15




FIGURE 1

Net Gain as a Function of Frequency, Given the Budget
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FIGURE 2

Net Gain as a Function of Frequency Given the Corresponding Optimal Budget
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FIGURE 3
Net Gain as a Function of Budget, Given Frequency
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FIGURE 4

Net Gain as a Function of Budget, Given the Corresponding Optimal Frequency

A TN

Budge




25

REFERENCES

Aaker, David. "A Probabilistic Approach to Industrial Media Selection”, Journal of
Advertising Research, V. 8 (September, 1968) 46-65.

Achenbaum, Alvin A. "Effective Exposure: A New Way of Evaluating Media", Association of
National Advertisers Media Workshop, New York City, (February 3,
1977).

Agostini,  Jean-Michel.  "Analysis of Magazine Accumulative Audience”, Journal of
Advertising Research, (December 1962) 24-27.

Amstutz, Arnold E. Computer Simulation of Competitive Market
Response, The M.I.T. Press, Cambridge: 1967.

Bearden, William O., Robert S. Headen, Jay E. Klompmaker, and Jesse E. Teel. "Attentive Audience
Delivery of TV Advertising Schedules”, Journal of Marketing Research, Vol
18 (May 1981) 187-91.

Craig, Samuel C. and Avijit Ghosh. "Maximizing Effective Reach in Media Planning”, 1985 AMA

Educators' Proceedings, Series No. 51, Lusch, Robert F. et al. (eds.), 178- 182.

Engel, James F., Hugh G. Wales and Martin R. Warsaw, Promotional Strategy, Richard
D. Irwin, Inc., Homewood, 111: 1971.

Gensch, D. "Computer Models in Advertising Media Selection”, Journal of Marketing

Research, V. 10 No. 4 (November 1968) 414-424.

Gensch, D., "Media Factors: A Review Article", Journal of Marketing Research,
(May, 1970) 216-225.

Headen, Robert S., Jay E. Klompmaker and Jesse E. Teel, Jr. "Predicting Audience Exposure to Spot
TV Advertising Schedules", Journal of Marketing Research, Vol. 14
(February 1977), 1-9.

Headen, Robert S., Jay E. Kompmaker and Ronald T. Rust. "The Duplication of Viewing Law and
Television Midia Schedule Evaluation”, Journal of Marketing Research, Vol
16 (August 1979), 333-40.

Kamin, Howard. "Advertising Reach and Frequency", Journal of Advertising
Research, V. 18 No 1 (February 1978), 21-25.

Kreshel, Peggy J., Kent M. Lancaster and Margaret A. Toomey. "How Leading Advertising Agencies
Perceive Effective Reach and Frequency”, Journal of Advertising, Bol. 14 (No.

Krugman, 3}-[elr[9)§ft)‘E. "Why Three Exposures May Be Enough", Journal of Advertising
Research, (December 1972), 11-14.

Lancaster, Kent M. and Judith A. Stem. "Computer-Based Advertising Budgeting Practices of Leading
U.S. Consumer Advertisers”, Journal of Advertising, Vol. 12 (No. 4, 1983), 4-9.



26

Lancaster, Kent M., Peggy J. Kreshel and Joya R. Harris. "Estimating the Impact of Advertising
Media Plans: Media Executives Describe Weighting and Timing Factors”, Journal of
Advertising, V. 15 (No. 3) 1986, 21-29.

Leckenby, John D. and Marshall D. Rice. "A Beta Binomial Network TV Exposure Model Using
Limited Data", Journal of Advertising, Vol. 14 (no. 3, 1985), 25-31.

Lilien, Gary L., Abin J. Silk, Jean-Marie Choffray and Murlidhar Rao. "Industrial Advertising
Effects and Budgeting Practices”, Journal of Marketing, V. 40 (January 1976)
16-24.

Little, J. C. D. and L.M. Lodish, "A Media Planning Calculus", Operations Research, V.
17 (January-February, 1969), 1-35.

Lodish, L.M. "Empirical Studies on Individual Response to Exposure Patterns”, Journal of
Marketing Research, V. 13 (May, 1971), 212-218.

Massy, W.F., D.B. Montgomery and D.G. Morrison, Stochastic Models of Buying
Behavior, The M.I.T. Press, Cambridge: 1970.

Ostheimer, R.H. "Frequency Effects Over Time", Journal of Advertising Research,
V. 10 (February, 1970), 19-22.

Patti, Charles H. and Vincent Blasko. "Budgeting Practices of Big Advertisers", Journal of
Advertising Research, V. 21, No. 6 (December, 1981), 23-29.

Ray, M. L. and A.G. Sawyer, "Repetition in Media Models: A Laboratory Technique", Journal
of Marketing Research, V. 13 (February, 1971), 20-29.

Ray, M.L. and A.G. Sawyer, "Behavioral Measures of Marketing Models: Estimating the Effects of
Advertising Repetition for Media Planning”, Management Science, V.I§ Part II
(December, 1971), 73-89.

Roth, Paul M., How to Plan Media, Standard Rate and Data Service, Skolkie, 11I: 1968.

Rust, Roland T. Advertising Media Models - A Practical Guide, Mass.:
Lexington Books, 1986.

Rust, Ronald T. and Robert P. Leone. "The Mixed - Media Dirichlet Multinomial Distribution: A
Model for Evaluating Television - Magazine Advertising Schedules”, Journal of
Marketing Research, V. 21 (February, 1984), 89-99.

San Augustine, Andre J. and William F. Foley, "How Large Advertisers Set Budgets", Journal
of Advertising Research, V. 15 (October, 1975), 11-16.

Sissors, Jack Z., "Confusions About Effective Frequency”, Journal of Advertising
Research, V. 22, No. 6 (December, 1982 / January 1983), 33 - 37.

Sprague, Jeremy D. "Exaggerated and Understated Newspaper Reach”, Journal of
Advertising Research, V. 21, No. 6 (December, 1981), 39-44.

Sethi, Suresh P. "Optimal Long-Run Equilibrium Advertising Level for the Blattberg - Jeuland
Model", Management Science, V. 29, No. 12 (December, 1983), 1436-1443.



