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ON THE SOLUTION OF SADDLEPOINT PROBLEMS IN
CONTINUOUS TIME RATIONAL EXPECTATIONS MODELS*

By
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Abstract

A generalised solution method for rational expectations models which are representable by systems
of first-order linear differential equations with constant coefficients is introduced. The existing literature
relies on the existence of a similarity transformation which can be used to diagonalize the coefficient
matrix of the model. The method presented in this paper may also be used when such a transformation
does not exist. A simple example for which a diagonalizing transformation does not exist is used to illustrate
the application of the solution method.

1. Introduction

The purpose of this paper is to introduce a generalized method of solution for
those rational expectations models which are representable by systems of linear
differential equations with constant coefficients. These models are characterised by
a generalised saddle - point property and the solution, as well as describing dynamic
behaviour along the saddle-point path, also determines the restricitions (usually
boundary conditions) which are necessary to render the solution stable'. Typically
the non-predetermined, forward looking, variables exhibit a discrete "jump" so as
to place the solution on the stable manifold. In this paper we confine our attention
to those cases where the number of pre - determined, backward looking, variables
is equal to the number of stable roots of the characteristic equation of the model.
Howeer, cases where there are more stable roots than pre - determined variables
should also be straightforward to handle in many cases if suitable restrictions can
be formulated.

The solution method adopted in much of the literature to date uses a similarity
transformation to diagonalize the coefficient matrix of the model. (See, for example,
Buiter (2) and Dixit (3)). The method presented here also deals successfully with
those cases where such a transformation does not exist.

* 1 am grateful to Tony Sampson for helpful discussions, but the usual caveat applies.
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In section 2 we briefly review the method of Buiter and Dixit, in section 3 we
describe the generalised method and in Section 4 we give a simple economic example
for which a diagonalizing transformation does not exist. Finally, in section 5, we
offer some concluding remarks.

2. The case of a diagonalizable coefficient matrix

Consider the following linear dynamic model:
X=AX-X) 1)

where X is an n-vector, X is the n-vector of equilibrium values of the components
of X and A is an nxn matrix of constants. For simplicity we assume here that X
is constant; i.e. that all shocks are current and permanent. However, following the
work of Buiter (op. cit.) the case where X is time-varying is straightforward enough.

Suppose that A is a characteristic root of A and that A has multiplicity k, for
k = 1. Suppose also that, corresponding to A, we can find a set of k linearly
independent left characteristic vectors of A. If this holds for every distinct
characteristic root of A then there exists a similarity transformation that diagonalizes
A. Note that these conditions, which are necessary and sufficient for A to be
diagonalizable, are rather less restrictive that the often-quoted condition that the
n characteristic roots of A should be distinct. This latter condition is of course
sufficient, but not necessary.

Suppose that A satisfies these conditions and let M be the non-singular nxn
matrix whose rows are the linearly independent left characteristic vectors of A. Now
let:

Y=MX-X) @
so that: X=M1Y+X 3
and X=M-"1Y )

Substituting (3) and (4) into (1) and rearranging gives:
Y=MAM-lY=AY )

Where A is the nxn diagonal matrix whose diagonal entries are the characteristic
roots of A. The solution of (5) is:
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Y (t)=exp.(tA)Y(0) (6)

where exp. (tA) is the diagonal matrix whose diagonal entries are exp. (A;t), where
the A;’s are the diagonal entries of A i.e. the characteristic roots of A. Thus,
substituting from (2) into (6) and rearranging,

X(®)=X +M ™ exp. (tA) M (X(0) - X) _ @)

Finally, we derive conditions under which the model converges to the equilibrium
vector, X. Assume that the first n, elements of X are pre-determined variables and
the last n—n, are non pre-determined, "forward looking”, variables. Assume also
that A has n—n, characteristic roots with non-negative real parts and that these are
associated with the last n—n; rows A (and thus exp (tA)). Denote the n, and n—n,
sub vectors of X(0) and X by X,(0), X,(0), X, and X, respectively. Then in order
to neutralize the effects of the unstable roots we need to solve the following equation
for the initial values of the non pre-determined variables, X,(0).

M;, M, X(0)—X; M, (x,(0) — %) + M, (x,(0) — %)
M, My, X(0)—% o
MI 1 M 12
where =M is partitioned conformably.
M;, M,,

ie., providing M,, is non-singular,

X(0) =R, — Mgz My, (X,(0)— X)) ®)
These results are, essentially, the results derived by Dixit (3) and also reported by
Buiter (op. cit.).

3. A more general solution method

In this section we relax the assumption, made by Buiter and Dixit, that A is
diagonalizable. We introduce a rather more general similarity transformation, which
reduces A to a Jordan Matrix, and which may be used irrespective of whether A
is diagonalizable?.
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It can be shown that for any square matrix A there exists a square non-singular
matrix V such that:

A
Ay*

(@]

VAV-l=]J= )]

Q An*

where the elements on the diagonal are the characteristic roots of A and the elements,
*, on the super-diagonal may be either 0 or 1; all other elements are zero?. It is
helpful to consider J (which is known as a Jordan matrix) as the direct sum* of
a number of Jordan blocks each of the form:

lil O

Ji= Ml 10)

1
o A

where A; is one of the characteristic roots of A and all elements on the
super-diagonal are unity. Suppose A; is of multiplicity k and that there are h
linearly independent left characteristic vector corresponding to A; (h < k). Then
associated with A, there are h such Jordan blocks and these blocks do not increase
in size going from left to right along the diagonal of J. In cases where k—h is "large”
and h > 1 there may be some difficulty in determining the size of each J;. However,
these cases are likely to be rare in practice and we shall not dwell on them here.
The interested reader is referred to Finkbeiner (4) for further details.

To construct the matrix V we proceed as follows. For each set of blocks
corresponding to a particular characteristic root we have a set of h linearly
independant characteristic vectors. Suppose the first few blocks of J are of order
PXp, gXq, rxr, and so on. Then the p’th, (p+q)’ th, (p+q+r)’th rows of V are
these characteristic vectors. It does not matter which vector is assigned to which
block, so long as it is associated with the characteristic root which appears on the
diagonal of that block. To find the remaining rows of V write the transformation,
(9), in partitioned form as:
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Vv, A Log, Vv, (11)

The last row in each sub-matrix V; is the characteristic vector corresponding to the
diagonal element of J;. To find the remaining rows of V; note that

vil [A]=[J] [Vi]

Suppose J; is of order rxr. Then V; is rxn and multiplying out gives the following
equations (where V;; denotes the j’th row of matrix V;):

Vle=l,Vu+V,‘ j+1 3 j"—‘I, ey r—1

These may be solved backwards, recursively, since the elements of V;, are known.
(These rows are known as generalised characteristic vectors for A —see Noble and
Daniel (6)). Note that if A satisfies the conditions for diagonalization given in the
previous section then J=A and V=M. Hence the results of Dixit and Buiter are
a special case of this more general procedure.

Using this transformation, the solution to (1), referring to equations (2) to (7) is:
X(@t)=X +Vlexp(t]) V (X(0)-X) (12)

Since J is block diagonal so is exp(t]) and a typical pxp block is:

1 t t3/2!1— — — —tPVipy
01 t——-—-- t* % -2

exp (tJ)= | 0 01 exp (A;t) (13)
0 00 01

Clearly, the conditions under which the model converges are that the initial
conditions for the non pre-determined variables satisfy:
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Vi Viz X, (0)~ X Vi (Xi(0) - X))+ V]z(XZ(O)".XZ)

Vau Va Xs(0)— Rl 0

ie. providing V,, is not singular

X5(0)=Xy- Vi V3, (X3(0) - X)) (14)

4. A simple economic example

In a recent paper Giavazzi and Wyplosz (5) discuss the nature of the solution
of the model considered here when some of the characteristic roots of A are zero>.
They demonstrate that zero roots are a real possibility in such models and showed
that a consequence of zero roots was that the model would exhibit hysteresis. Here
we adapt the example used by Giavazzi and Wyplosz to illustrate the solution

procedure described in section 3 above.

Consider the following simple IS-LM model of a closed economy under rational
expectations.

m—p=ay—br (15)
r=i+p (16)
y=38-Bi a7

Equation (15) is the LM equation; m, p and y are, respectively, the logarithms of
the money stock, price level and real output and r is the nominal interest rate.
Equation (16) is the Fischer equation with i the real rate of interest; (17) is the IS
equation. Suppose that monetary policy is used to control the nominal interest rate.
Substituting (17) into (16) gives

p=r+(y—58)/p (18)

To close the model we must specify the dynamic behaviour of r and y. Following
Giavazzi and Wyplosz we make the simplest possible assumptions:

y=yy*-y) (19)
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where y* is the (constant) "Natural” level of real output and vy is a positive constant.
Finally, if r is constant, then:

r=0 20)
Equations (18), (19) and (20) constitute the model which may be expressed as:
x=A(x-X) (21)

where x=[y, p, r]T, X =[y*, p*, (6—y*)/B]T

(p* is any arbitrary price level: It is well known that such models have an
indeterminate price level);

- 0 0
1

A= B 0 1
0 0 o

Now A cannot be diagonalized. Its characteristic roots are —v for which [1, 0, 0]
is a left characteristic vector and zero (of multiplicity 2) for which the only left
characteristic vector is (a scalar multiple of) [0, 0, 1].

Following the procedure of section 3 we find that a generalised characteristic
vector for the zero root is [1/Py, 1, 0]. Hence:

1 0 o
V= /By 1 0
0 0 1
—y i 0 0
and VAV-!=J= 0 i 1
0 E 0 o
I
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where the partitioning shows the two Jordan Blocks of which J is composed. (12)
and (14) may now be applied in order to write out the complete solution.

5. Concluding remarks

Just how important the problem of a non-diagonalizable coefficient matrix is
in practice is probably an empirical matter. However, we have shown that it is
relatively easy to construct a theoretical model with this property without making
any extreme assumptions. The solution method introduced in the paper provides
a generad method of dedling with such cases.

An dternative solution procedure would be to tackle the problem directly using
the Laplace transform. Using the complex inversion formula, the stability conditions
could be derived by setting the residues corresponding to the unstable roots (poles)
equal to zero®. The methods presented in this paper, however, are probably essier

to apply.

Footnotes

1. More accurately, for the solution to converge to a finite steady state.

2. Blanchard and Kahn (1) in a paper concerned with the solution of difference equation models
mention the Jordan matrix. However they do not describe the construction of the transformation matrix
and the only example given has a diagonalizable coefficient matrix. The significance of this reference
certainly does not seem to have been grasped.

3. See, for example, Finkbeiner (4), chapter 7.

4. The direct sum of two square matrices is defined as follows. Let A be nxn and let B be mxm. Then:

A [0}
A®B=
O B

is of order (m+n) x (m+n).
5. The solution given by Giavazzi and Wyplosz also assumes that the coefficient matrix is
diagonalizable.
6. See, for example, Queen (7), for details of this method.
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