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Abstract

Optimal growth models have been either of discrete - or continuous - time formulation. This paps
breaks away from this tradition. It considers a model in which consumption takes place at discrete time:
while production is continuous, and a model with consumption at all points in time, while output :
produced at discrete times. Such formulations make sense and are realistic. First order conditions ar
obtained and it is shown that they characterize unique globally optimal solutions. These conditions ar
interpreted and their relation to the Euler equation is explained. The discussion reveals a number ¢
interesting aspects of the two models.

1. Introduction

Optimal growth theory took off with the original contribution by Ramsey am
flourished in the sixties and early seventies'. It attracted contributions from .
number of mathematical economists and economic theorists and applications hav
continued in a range of areas. The results obtained have enhanced our understandin,
of the principles which govern the optimal allocation of resources over time. J-
typical model consists of the maximization of a welfare criterion which depends 01
consumption over time subject to Technological and resource constraints over th
same period. The issue is the planning of the optimal intertemporal allocation o
resources. A basic result that emerges in the dynamic equation which connects th
decisions from one point in time to the next is the equality between the margina
rate of substitution in consumption and the marginal rate of transformation ii
production. Hence in planning the intertemporal allocation of resources the rul
which holds instantaneously in the static model must now hold at all points in time

* 1 wish to thank a referee of this journal for his comments on an earlier draft.
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Two types of models have been consdered in the literature. These are the
discrete- time formulation and the continuous-time formulation. In the
discrete - time formulation the welfare function is the sum of discounted utilities
of consumption and, at equally spaced intervals, the production constraint relates
consumption and capital stock decisions. In the continuous - time formulation the
wedfare functiona is the integral of discounted instantaneous utilities of consumption
and the production congtraint relates at each point in time consumption and
investment decisions. In both types of modds the choice is between more
consumption today and more consumption tomorrow and optimal planning implies
that the consumption and capitd stock paths solve the dynamica equation which
describes the motion of the system when the marginal conditions for optimality are
satisfied. In analysing the above models the economists have made a number of
mathematical contributions and have introduced devices to tackle in particular the
issue of convergence of the wefare criterion. However, in spite of these mathematical
adjustments, the fact remains that both the discrete - and continuous - time models
are usualy cast in such a form so that they become eadily tractable mathematical
problems with the mathematics required being readily available.

The discrete- time models are anadysed through the application of rules of
ordinary differential caculus and the continuous - time models through those of
the calculus of variations and its extensions, dynamic programming and optimal
control theory. The firg order conditions for dynamic optimization assume a natural
interpretation. A rdaively easy argument employing the strict concavity of the utility
function proves that the paths of the first order conditions are the unique globaly
optimal paths.

Most optimal growth models in the literature are in continuous- time form.
This is not due to the fact that such formulations are deemed to be more realistic
but mainly because the presentation of the results is much negter in continuous time,
especidly in the case of stochastic models. In general the continuity or piecewise
continuity of the functions is smpler to visudize and the asymptotic tendency of
the paths easier to depict. On the other hand, economic interpretations are essier
in discrete - time models. Even in continuous - time models, in order to obtain the
economic interpretation of the Euler - Lagrange equation, one assumes, as a firgt
approximation, a discrete - time formulation with finite but small time - increments
and obtains through ordinary calculus a relation which is easy to interpret. The
Euler - Lagrange equation emerges in the limit and assumes a natural interpretation.
Both types of models are very useful.

This paper breaks away from the above tradition. It starts with the observation
that there are economic problems of optimal alocation of resources which do not
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fdl naturaly into either of the above categories. It modds such situations, and
obtains the mathematical characterization of the optimal paths and the economic
interpretation of the optimality conditions.

In the models formulated here consumption decisons are not synchronized with
the production process. Such formulations make sense and are redligtic. On the other
hand this implies that the optimal alocation of resources over time must now take
place through discrete- continuous time decisions. This implies, in terms of
mathematics, that techniques from both ordinary calculus and the caculus of
variations must now be employed.

In the firg of our models consumption takes place at discrete times while
production is continuous (Modd 1). For example the individua visits the market
once a "week", while money in the bank grows at a continuous compound rate of
interest. Utility each week is a function of the quantities available for consumption
inthat week. As we shdl see, the maximization problem is that of choosing optimally
a finite number of variables.

Mode 2 could describe the following situation. Wheat planted now produces
wheat next period, but wheat retained for consumption is spread over the whole
interval with the instantaneous utility being a fungtion of the consumption rate.
Mathematically there are in effect two problems. One is to allocate, optimally, fixed
guantities over given intervals and the other is to choose optimally the capita stock
at discrete times.

In both models the utility and production functions are strictly concave and
future utilities are discounted. A zero discount rate would have smplified the
calculations.

For both models we obtain first order conditions for optimality and employ
the drict concavity of the functions to show that these conditions characterize a
unique globaly optimal solution.

Now as explained above in both discrete-and continuous - time modéels an
interior solution requires that the margina rate of substitution in consumption be
equal to the marginal rate of transformation in production, between adjacent
periods. In continuous modds adjacent periods aret and t +dt, where dt is taken
to be very small.

For both Modd 1 and 2 here, we obtain analogous interpretations of the first
order conditions. In particular in Mode 2 we have equdity between margina rate
of subgtitution and margina rate of transformation within and between periods.
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Finally we explain how by allowing the intervals to become shorter and shorter
we obtain in both cases, the familiar Eulerian relation of the calculus of variations.

2. Consumption at Discrete Times and Production Continuous in Time

We now consider Model 1

L
Maximise U= 2", &' u(c;)
i=0

Subject to
c,+ki=W

e+ ki= 1+ £ (k) de+k? )

o

c,+ kb =J'?f(k(t)) dt+k

co=J" flk@®)dt+k,

n-1

‘%"- =f(k(t)) for tefi, i+1], initial condition k', c;, k" >0

where W is a positive constant and 5=11TB with B>0. All intervals are of unit

length, ¢ denotes consumption and k capital. The same good can be used both for

consumption and production purposes. At time t=i a quantity kf of the good is

dk

allocated to production and since —di(-t—) =f(k(t)) the total quantity available at

t=i+1isk,,=J " f(k(t)) dt+k. This is now divided between consumption and

capital input in the new period, i.c. k;rl +¢;1=k;,,- The process starts with an
initial quantity of the good W.

We make the following assumptions. For the instantaneous production function
we assume f(k)>0, f'(k)>0 and f'(k)<0, and for the utility function u’(c) > 0,
u"’(c) < 0 and u(0)=o°. A positive terminal capital stock requirement could have
been accommodated easily. Also a free disposal assumption would not have made
any difference to the solution since by assumption u’(c) > 0.

Now in order to obtain the solution we argue as follows. Within the intervals
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there is nothing to choose. Given k', the total quantity of the good, available at
time i+1is [ f(k@®)dt+k; .
1

We form the Lagrangian function

V= i&i u(c) +A(W—-c,—k? )+7Ll(fol f(kt))dt+k;—c;—kj)+ 2, (J’sz(k(t)) dt+
i=0

............................................................................................

Ki—cy— ki) +...A M,(_r f(k(t)) dt+k’  co—ki ) +A, (f:_]f(k(t))
dt+ki_, —c,) @

First order conditions for a maximum are

av. av Ak (t, kH)
=u'(cy) —Ao=0 = =%, +l(f f' (k) — > ° dt+1)=0
0 ° ak; ‘ ak?
Ak (¢, kT
‘%?‘5”“0‘M=° o = —h+ (T x+) dt+1)=0 (3

B R

ak (t, k!_))

dt+1)=0
ok,

OV _smurc)—2r.=0 2V —_a _4a " Pk
20, ="V ED—Ha g, = bl 10

W—c,—k'=0, f: f(k()dt+ k-1 —k=0,..., [* f(k(®)dt+k}~c,=0

Conditions (3) and% =f(k) in [i, i+ 1] characterize a unique, globally optimal

vector (c3, c},..., cf, ko*, kI*,..., k;*)). In order to obtain this result, first we
: i+1 o g
establish that z;= f' " f(k(t))dt is strictly concave in k.

We rewnteglk-f(k) = -mwluch implies t = f f(k) +i=[8(K )] +i.

Hence Z(k)=t+@(k)—iand k=h(t+ ﬁ(k*)—l} where h=@"!, and &’ (k)— f(k)

It follows that @’(k) -? —k— =2'(k}) and }}?) > 0. We also have gl]é* =

f(k)
f(kJ')2
fact that k(t) > Ic,+ It follows that

() -fk)) < 0 for t >tj, because of the strict concawty of f(k) and the
i+1 9%z;
ak+ ‘f, f(k(t)) ak+ dt > 0 and 821(,, =

i %k
f +l[f" (k@) ( ﬁr )2+ (k) 5zir 2K )dt < 0. Hence z; is strictly concave in k;.
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We now turn to the global optimality argument.

Proposition. If (c3, ct,..., c¥, k}*, ki*,..., k. *)) satisfies (3), for some (,,

Aise--s Ay), then it is the unique globally optimal consumption and capital stock
vector.
Proof. Obviously all A’l will be positive. Consider any other feasible

consumption and capital stock vector such that at least one ¢; # ¢;*. The strict
concavity of u implies

2 8hu(e) = 2 siu(ed) < Z 81 (eA)ei—oF) =2 Ay (ci—cf) =

=Ao (k! * =K+, (J: f(k(v)dt + k! — ki — j: f* )t —k* + K+ L+ A

(f ::; f(k)dt+k -k [ z: flk*@®)dt =k, %, + K %) +hn( f:hl k@)t +k’ _,
-7 flem)dt-k)=0 @

The strict concavity of f' Hf(k(t))dt in ki implies

Q< (~Aoth (J] f’(k‘(t))g% dt+1)) G =K%+ ..+

(~Ract2a (I £04) _%E:T, dt+1)) (f_,—k:*) ®)

which is zero because of (3). This completes the proof.

Next we turn to the interpretation of the first order conditions. Relations (3)
imply

u’(c;) i+l [, ak

—— = f'(k)—— dt+1 6

e i ® .
The right-hand-side of (6) can be interpreted as the marginal rate of

transformation. Suppose k;_, and k", are fixed. Now a decrease in ¢; by one unit

implies an increase in k] by one unit, which in turn implies an increase in c;,; by

i

_f it f'(k) %; dt + 1, which, therefore, can be interpreted as the marginal rate of
i
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transformation between c; and c;,,. Of cource the left-hand-side of (6) is the
marginal rate of substitution.

Finally we show how replacing the unit interval between consumption decisions
by At and allowing At to tend to zero we obtain through (3) the Eulerian relation
of the calculus of variations.

We take At =-§- where N is a positive integer that will tend to infinity. The pro-
" " i tH At . -
duction constraints will now be of the form ¢, s At+k’, , = ft f(k(t))dt” + kT,

except for the first one which remains the same and the last one in which k:+ At 18
set equal to zero. Therefore with respect to the marginal rate of transformation,
arguing as above, we have for small At

ok

.__ic_'_tﬁ_f=“'m' ny 9k L (et
MRT = - fl £ (k(t")) TS dt' +1=f(k")At+1 @)

where f'(k; )At is obtained by using the first order approximation of the integral
: ; ok
and invoking (—— )._, =1.
(e
The question arises as to the limit of the utility function as the decision interval
is divided into smaller and smaller intervals of equal length. One can argue as
follows. First, the discount factor is replaced by

. 1 t/At
k) ) -

Now we know that in the limit the utility sum is replaced-by an integral. In
the utility sum in (1) we interpret 8'u(c;) to mean that quantity c; allocated to
consumption at the beginning of the interval implies a constant utility rate, 8'u(c;),
throughout the unit length interval. However when the length of the decision interval
is changed to At, consumption allocated at the beginning of the interval implies a
constant utility rate weighted by At. Taking into account also the new discount factor
we write

i
u=x (iﬁt’) u(c;)At (®)

where index i and time t are related through t=iAt.

Obviously as we have extended consumption decisions into [‘—; 2 3‘;—1 - 1],

we assume that production is also carried out during this interval.
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For the modified model, the marginal rate of substitution between ¢; and ¢, .4, is

u'(c,) At

usa JOERE
u'(Cey adAL

MRS = — dc,

=(1+BAt) 9)

and MRS =MRT is obtained from the corresponding to (3) first order conditions.

Next, u(c) is well behaved in ¢ and applying the mean value theorem on the

function —l we obtain from (9)
u’(c)

1+BAL— :((;:)% 0 E)Crs ac—c) = F (AL +1 (10)

where E lies between c, and c,, 5., and the right-hand-side is from (7). The question
arises as to whether, for sufficiently small At, we can replace £ by ¢, in (10).

Relations (3) imply for bounded f’(k), that (¢, »,—¢ —0 as At =0 and therefore
in this case & can be replaced by c,. Hence in 'the limit we obtain from (10)

1

By ¥ (€ g =Tk or exp(-BOW ()T (k) +gr exp(-BOw €)=0 (D)

which is the Eulerian relation of the calculus of variations.
3. Consumption at All Points in Time and Production in Discrete Times
Now we consider Model 2
Maximize U= [ exp(—PBt)u(c(t))dt
Subject to [ etydt+k,=W (12)

flzc(t)dt +k=g(ky)+k,

S edt=g(ky o) +k;

(), k; 20

where W is a positive constant and >0. The notation is the obvious one and once
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more the same good can be used for consumption and production purposes. For
the production function we assume g'(k)>0 and g"'(k)<0, g(k)>0 and for the
instantaneous utility function u’(c)>0, u’’(c)<0 and u’(0)=cc. As in Model 1, a
positive terminal capital stock requirement could have been accommodated easily,
and a free disposal assumption would have made no difference to the solution.

We now have to choose the k;’s and allocate the quantities available for
consumption optimally.

In order to characterize the solution we form the Langrangian function
V= f:exp(—at)u (c(t))dt + 2, (W—ku— J‘o‘ c(t)dt) §3 (g(ko} +ko—k :c(t) dt) 13)
+2a(8) +ki—ka=L cOdt)+ ...+ 2p (g ka3 +kn3—kna— S cO)d)
+haoi (st +kaa—J c()dt)

The problem in (12) is a mixture of maximization problems, one with respect
to a finite number of variables and one with respect to paths c(t).

First order conditions for a maximum are
exp(—BOu'(c®)=A, te[0, 1] W—k,— f:c(t)dt=0
exp(—Btyu'(c(®) =X, te[l, 2] g(ko)+ko—k; -J’fc(t)dt =0
................................................. g(k,)+k1——k2—-f23c(t)dt=0
exp(—Btu’(c(t) =k, te[N-2, n—1]  cooiiiiriiiii s
exp(—BOW () =y teln-1,0] gy ) +kys—kn o c@®dt=0

gy ) +koo—f" c(®dt=0 (14)

~ Ao+ M (g (k) +1)=0

—M+hy(g (k) +1)=0

......................................

~ A3t raa(g’ (ke 3)+1)=0

A2+ A1 (8 (Kap)+1)=0
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Next we consider the global optimality of the above conditions.

Proposition. If path c*(t) and vector (k3, kT,...,k%_,) satisfy (14) for some (Ao,
Ais.--» Ay_p) then they are the unique globally optimal consumption path and capital
stock vector.

Proof. All A’s will be positive. Consider any other feasible path c(t) and vector
(ko Kiy-.., Kn_p) such that c(t) differs from c*(t) over some interval. The strict
concavity of u(c) implies

S exp(-Bryu(c)dt—J exp(-Byu(c*®)dt <[ exp(-pu’(c* M) (c(t) — c*®) dt=Q (15)
Now because of the first set of relations in the first order conditions, (14),

0 j: Ao (c(t) —c*(®))dt + fx, (c(t) - c*(@®))dt +/ 23 Ko (ct) — () dt + ...

+f “: Ma(c®-c*®)dt+" Ay (c®-c*®)dt, (16)

and invoking the second set of these relations we have

Q=2o(—ko+k3) +1(8(ko) + ko~ k; —g(k3) — kg + ki) +

Mg k) +ky—ky—g (k) — kI +K3) + ... + Ay 5 (8(Ky_3) + Ky 3~k 5~

—g(ka ) — k3 3+ k3 2)+ Ay (8(ky ) + ka2~ 8k )~k ) )

Next invoking the strict concavity of g(k) we obtain

Q < (ko—k3)(—Ro+ M (g (k3) + 1))+ (ky — k) (= Ay + 22 (g KD + 1)) + ...

+(kn2—Kkn2) (— M2+ Ap1(g'(ky2) +1)) (18)

which is zero because of the last set of relations in (14). This completes the proof.

Below we turn to the interpretation of the first order conditions. First we notice
that in order to obtain the solution of Model 2 we could have argued as follows.

Suppose k, ,..., k,_, were fixed. This would mean that the total quantity
available for consumption during any period was fixed. The optimal allocation of
this quantity within the period would be obtained by solving

Maximize u=f exp(— Btyu(c)dt



261

Subject to [Hleyd=A;
1
c(t) 20
where A; denotes the total quantity allocated for consumption in [i, i+ 1] 19

The solution of (19) will be a path c(t), te[i, i+ 1], which will depend on A,
which in turn depends on the relevant k;’s. For the full solution of Model 2, it
remains to select k,, ki, ..., ky_5.

The first two sets of relations in (14) solve all consumption allocation problems
for fixed k,, Ky, ..., ky_. Then given the first set of relations, the last two sets in
(14) determine the optimal values of k,, ki, ..., ky_3.

Now within any interval [i, i+ 1] the first set of relations in (14) imply

exp(=Bju(c®) _ o
exp[_Bt')u‘(c(t')) =1 t, t 8[1, l+1] (20)

The left-hand-side of (20) can be recognized as the marginal rate of substitution
between c(t) and c(t”). The right-hand-side is the marginal rate of transformation
between c(t) and c(t’). A fixed quantity has been allocated to consumption and any
one unit can simply be transferred between any two points in time.

Next from the first and last set of relations in (14) we obtain

exp(—Bi)u’(c(i)) o - )
exp(_B(l+1))u'(c(l+1)) g(k|}+l 1 0, l, — | 2 (21}

Relation (21) expresses the equality of the marginal rate of substitution to the
marginal rate of transformation between adjacent periods.

Let Ci=f+lc(t]dt, i=0, 1, ..., n—1, the total quantity available for

consumption in [i, i+ 1]. Suppose k;_, and k;,, are fixed. A decrease in C; by one
unit implies an increase in k; by one unit which in turn implies an increase in C;
by g'(k;) + 1. Therefore
dCGiyy _ .
MRT= —dc, =g'(k;)+1 (22)
On the other hand, for a constant utility level variations in C; and C;+ 1 must
satisfy
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S exp(=BOu c)sc@)dt +f' 7 exp(~Byw (e(t)) se(tydt=0 &3

which in view of the first set of relations in (14) implies

u'(c (i}]_l'ii “I8c(t)dt + exp(—B) u'(c(i+ l))f:]z&c ()dt=0 24

and since dCi=f+18c (t)dt the left-hand-side of (21) can be recognized as the
marginal rate of substitution between C; and C;.;.

Next we show that as the production period becomes infinitesimally small
relation (21) tends to the Eulerian relation of the calculus of variations. If the
production period is of length At relation (21) is replaced by

_w(e®) .
exp(—BADU (et +AD) ° (k) At+1 -

The left-hand-side is obvious. The right-hand-side follows from the fact that if k,
produces g(k,) when the production period is of unit length then, approximately,
k, produces g(k,)At when the production period is of length At.

Now irrespective of the fixed length of intervals, At, c(t) is not necessarily
continuous in time, in particular as we cross from one interval to the next. On the
other hand u(c) is well behaved in ¢ and applying the mean value theorem on the

function T we can write for some value & between c(t) and c(t+ At)
wiew) _,_ule®)
w(o(t +AD) 1 u(E)? u”(E)(c(t+At)—c(t)) (26)

The question arises as to whether, for sufficiently small At, we can replace £
by c(t) in (26). Relation (25) implies, for bounded g'(k,), that (c(t+At)—c(t)) =~ 0
as At = 0 and therefore in this case & can be replaced by c¢(t). Approximating also
exp(BAt) by 1+ pAt we can replace (25) by

1+pBAt— ( @ }) u(c®)(ct+A)—c(®) =g (k)AtF1 27
which implies

1
B—- v (F(t-))‘ u’(c (t)] =g'(k) or
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exp(—Byu’(c) e’ (k) + d—c: exp(—Bt)u’(c(t))=0 (28)

the Eulerian relation of the calculus of variations.

4. Conclusion

We have discussed, for discrete — continuous time models, global optimality
conditions and obtained their interpretation. It was also shown how, as the distance
between the equally spaced discrete times tends to zero, the optimality conditions
tend to the Euler equation of the calculus of variations. Special aspects of the two
models discussed are the following.

In Model 1, where consumption decisions are taken at discrete times, we are
seeking the solution of a maximization problem with a finite number of variables.
An interesting feature of the discussion is how the strict concavity of the
instantaneous production function is used in the sufficiency argument. Also of special
interest is the manner in which the utility sum is assumed to adjust as the distance
between decision times becomes shorter. It implies that in the limit the first order
conditions are reduced to the Eulerian relation of the continuous model.

In Model 2, where consumption takes place at all points in time, there are in
effect two problems. One is the optimal allocation of fixed quantities over given
intervals and the other is the optimal choice of capital stocks at the discrete times.
Equality between marginal rate of substitution and marginal rate of transformation
holds now within and between periods. Continuity of the consumption rate path
as we cross intervals is not guaranteed, however it is again possible to obtain in
the limit the characteristic equation of the calculus of variations.

Footnotes

1. References reflecting the basic literature are given at the end of the paper. Burmeister and Dobell
(1970), and Takayama (1985) present a very good discussion of the main issues.
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