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Abstract 

Optimal growth models have been either of discrete - or continuous - time formulation. This paps 
breaks away from this tradition. It considers a model in which consumption takes place at discrete time: 
while production is continuous, and a model with consumption at all points in time, while output : 
produced at discrete times. Such formulations make sense and are realistic. First order conditions ar 
obtained and it is shown that they characterize unique globally optimal solutions. These conditions ar 
interpreted and their relation to the Euler equation is explained. The discussion reveals a number c 
interesting aspects of the two models. 

1. Introduction 

Optimal growth theory took off with the original contribution by Ramsey am 
flourished in the sixties and early seventies1. It attracted contributions from . 
number of mathematical economists and economic theorists and applications hav 
continued in a range of areas. The results obtained have enhanced our understandin, 
of the principles which govern the optimal allocation of resources over time. J-
typical model consists of the maximization of a welfare criterion which depends 01 
consumption over time subject to Technological and resource constraints over th 
same period. The issue is the planning of the optimal intertemporal allocation ο 
resources. A basic result that emerges in the dynamic equation which connects th 
decisions from one point in time to the next is the equality between the margina 
rate of substitution in consumption and the marginal rate of transformation ii 
production. Hence in planning the intertemporal allocation of resources the rul 
which holds instantaneously in the static model must now hold at all points in time 

* I wish to thank a referee of this journal for his comments on an earlier draft. 
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Two types of models have been considered in the literature. These are the 
discrete - time formulation and the continuous - time formulation. In the 
discrete - time formulation the welfare function is the sum of discounted utilities 
of consumption and, at equally spaced intervals, the production constraint relates 
consumption and capital stock decisions. In the continuous - time formulation the 
welfare functional is the integral of discounted instantaneous utilities of consumption 
and the production constraint relates at each point in time consumption and 
investment decisions. In both types of models the choice is between more 
consumption today and more consumption tomorrow and optimal planning implies 
that the consumption and capital stock paths solve the dynamical equation which 
describes the motion of the system when the marginal conditions for optimality are 
satisfied. In analysing the above models the economists have made a number of 
mathematical contributions and have introduced devices to tackle in particular the 
issue of convergence of the welfare criterion. However, in spite of these mathematical 
adjustments, the fact remains that both the discrete - and continuous - time models 
are usually cast in such a form so that they become easily tractable mathematical 
problems with the mathematics required being readily available. 

The discrete - time models are analysed through the application of rules of 
ordinary differential calculus and the continuous - time models through those of 
the calculus of variations and its extensions, dynamic programming and optimal 
control theory. The first order conditions for dynamic optimization assume a natural 
interpretation. A relatively easy argument employing the strict concavity of the utility 
function proves that the paths of the first order conditions are the unique globally 
optimal paths. 

Most optimal growth models in the literature are in continuous - time form. 
This is not due to the fact that such formulations are deemed to be more realistic 
but mainly because the presentation of the results is much neater in continuous time, 
especially in the case of stochastic models. In general the continuity or piecewise 
continuity of the functions is simpler to visualize and the asymptotic tendency of 
the paths easier to depict. On the other hand, economic interpretations are easier 
in discrete - time models. Even in continuous - time models, in order to obtain the 
economic interpretation of the Euler - Lagrange equation, one assumes, as a first 
approximation, a discrete - time formulation with finite but small time - increments 
and obtains through ordinary calculus a relation which is easy to interpret. The 
Euler - Lagrange equation emerges in the limit and assumes a natural interpretation. 
Both types of models are very useful. 

This paper breaks away from the above tradition. It starts with the observation 
that there are economic problems of optimal allocation of resources which do not 
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fall naturally into either of the above categories. It models such situations, and 
obtains the mathematical characterization of the optimal paths and the economic 
interpretation of the optimality conditions. 

In the models formulated here consumption decisions are not synchronized with 
the production process. Such formulations make sense and are realistic. On the other 
hand this implies that the optimal allocation of resources over time must now take 
place through discrete - continuous time decisions. This implies, in terms of 
mathematics, that techniques from both ordinary calculus and the calculus of 
variations must now be employed. 

In the first of our models consumption takes place at discrete times while 
production is continuous (Model 1). For example the individual visits the market 
once a "week", while money in the bank grows at a continuous compound rate of 
interest. Utility each week is a function of the quantities available for consumption 
in that week. As we shall see, the maximization problem is that of choosing optimally 
a finite number of variables. 

Model 2 could describe the following situation. Wheat planted now produces 
wheat next period, but wheat retained for consumption is spread over the whole 
interval with the instantaneous utility being a funstion of the consumption rate. 
Mathematically there are in effect two problems. One is to allocate, optimally, fixed 
quantities over given intervals and the other is to choose optimally the capital stock 
at discrete times. 

In both models the utility and production functions are strictly concave and 
future utilities are discounted. A zero discount rate would have simplified the 
calculations. 

For both models we obtain first order conditions for optimality and employ 
the strict concavity of the functions to show that these conditions characterize a 
unique globally optimal solution. 

Now as explained above in both discrete-and continuous - time models an 
interior solution requires that the marginal rate of substitution in consumption be 
equal to the marginal rate of transformation in production, between adjacent 
periods. In continuous models adjacent periods are t and t + dt, where dt is taken 
to be very small. 

For both Model 1 and 2 here, we obtain analogous interpretations of the first 
order conditions. In particular in Model 2 we have equality between marginal rate 
of substitution and marginal rate of transformation within and between periods. 
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