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Abstract

In this paper we consider the Least Squares (LS) estimator (predictor) and various ridge estimators
(predictors) and report on a Monte Carlo study their small sample properties. The Monte Carlo experi-
ment is applied to a residential electricity demand function with data from the Greek economy. On the
basis of 2,500 replications of sample size 24 for normal disturbances we find that for the measures of
dispersion the HKB estimator appears to be superior to the rest of the examined estimators. On the other
hand the choice ofalternative predictors for several measures of bias and dispersion is not clear. Further-
more, it should be noted that the small sample properties of the ridge estimators turn out to be different

from the small sample properties of their respective predictors.

1. Introduction

Ridge regression is an alternative to Least Squares estimation in the multi-
ple linear regression model, primarily dealing with the problem of multicolli-
nearity. Ridge regression defines a class of estimators indexed by a biasing
parameter k. Several algorithms have been proposed for k and tested through
Monte Carolo simulations.

The purpose of this paper is to compare LS and five well known ridge
estimators (predictors) according to measures of bias and dispersion and report
their small sample properties. The Monte Carlo simulation is applied to a resi-
dential electricity demand function with real data, on the basis of four alterna-
tive forms of normal disturbances. In Section 2, the five ridge algorithms are
defined. The design of the Monte Carlo experiment is outlined in Section 3,
followed by the simulation results in Section 4. Some concluding remarks com-
prise the final section of the paper.



2. Ridge Estimators

Consider the linear regression model y= XB+¢ with E(e)= 0 and E(ee’) = o°L.
The LS estimator is defined by = (X’ X)"' X’y. However, if the explanatory
variables of the design matrix X are collinear then X "X is nearly singular and LS
suffer from variance inflation, instability and incorrect signs of the estimates of
the coefficients, that turn out to be critical in a real life application.

2. Ridge Estimators

Consider the linear regression model y= Xf+e with E(¢)= 0 and E(ee”) = o'l
The LS estimator is defined by p= (X* X) - 1X’y. However, if the explanatory
variables of the design matrix X are collinear then X” X is nearly singular and
LS suffer from variance inflation, instability and incorrect signs of the estimates
of the coefficients, that turn out to be critical in a real life application.

Hoerl and Kennard (1970) propose the class of estimators defined by
B(k) = (XX + k1) "Xy, k>0 (1)

For suitable k, the ridge estimator dominates LS in mean square error
(MSE) and improves the ill-contitioning of the matric X"X. The problem with
this class of estimators is that the optimal value of k depends on the unknown
parameter P, as well as the error variance ¢”.

Several algorithms for the biasing paramater k have been proposed in the
literature. Five o these algorithms are evaluated in this paper and can be divided
in the following categories: a) the MSE approaches, b) the Bayesian approaches
and c) the constrained LS approaches. '

In the first category, consider the more general ridge estimator suggested by
Hoerl and Kennard (1970) and Goldstein and Smith (1974).

B(k) = (X’ X + G’KG)'X’y )

where K= diag (k. ... k) p the number of explanatory variables. The MSE
function is minimized at k= s 2y, where v = G’B, G’X’XG= A with A= diag
(Ais..., Ap), Ai being the eigenvalues of X’X. Hoerl, Kennard and Baldwin (1975)
propose the HKB estimator, using the harmonic mean of these k; to obtain a
single value of k. It is defined by



k= ps’/B°B A3)
where §*= (y-XB)* (y-XB)/ (n - p) 4)

Hoerl and Kennard (1976) suggest an iterative procedure of the HKB algorithm
that corresponds to the HK estimator.

The second category represents Bayes ridge estimators provided that some
conditions are satisfied. Lawless and Wang (1976) adopt a Bayes approach,
which is known as the L & W estimator and estimate k (whlch is also the
varlance ratio of the samplin and prior distributions) by ps )’E?L.y, , where 1/ G’ ]3
and s’ is defined by (4). Dempster, Schatzoff and Wermuth (1977) propose to
choose k in a way that

=¥/ (6,2 +s* /M) = p (5)

where 052 =5’/k, and s’ is defined by (4). This approach, that gives the RIDGM
estimator, is implemented by evaluating (5) for a mesh of k values and choosing
the one that most closely satisfies the equality.

Finally, in the third category, McDonald and Galarneau (1975) suggest to
estimate

Q=p"B - s’EA (6)

If Q is positive this criterion is implemented by evaluating B (k)ﬁ (k) for a mesh
of k values and choosing the one that minimizes the quantity | B* (k) B (k) -Q|.
This procedure gives the Mc & G estimator. If Q is negative the procedure
defaults to LS.

3. Design of the Experiment

The experiment involves a Monte Carlo simulation of a demand function
for residential electricity in Greece. The demand function in matrix notation is
.given by:

C=Z8+¢ %)

where Z=[1t Y PH N D E T, T:], C being the vector of per capital consumption
of electricity, 6 the coefficient vector to be estimated and € the error term. Also, i
is a vector of unit elements, Y the per capita personal disponsable income, P the



marginal price of electricity, H an index of heating degree days with respect to
consumption, D the average price of diesel fuel, N the number of electricity
consumers, E the sales of electrical appliances and T, T, indicator variables for
the two oil shocks of 1973-74 and 1978-79 respectively. The sample consists of 24
observations covering the period 1961-84.

The numerical values assigned to the elements of the vector 8 = 8° are
defined to be the "true” coefficients. The elements of 8° are obtained from the LS
estimates of (7). Furthermore, 2,500 samples (size 24) of disturbances are
obtained from independent normal numbers with zero mean and standard devi-
ation given equal to 24.7 (standard error of the regression), 75,. 150 and 225.
Using (7) the values of the dependent variable C are computed. Having the
generated observations of C and the values of the design matrix Z, LS and the
five ridge algorithms of section 2 are applied. The predicted values C of C are
then obtained by:

C=25 8)

where 3 is the vector of the estimated coefficients of 8. Finally, given that the
"true” parameters are known, since they are defined at the first stage of the
experiment, the bias, MSE, and variance (Var) of each algorithm are computed
(Donatos, 1989).

4. Comparison of Estimators

Given the small sample summary statistics of the bias, MSE, and variance
for the LS and the five ridge estimators of the parameter coefficients (or the
predictors of the mean of the dependent variable) of the demand function for
residential electricity, we examined the small sample rankings of the estimators
(predictors) for disturbances following forms of normal distribution. The results
aregivenin Tables 1 and 2.

The LS estimator turns out to have the smallest bias and to be the least
efficient in MSE, a finding expected and verified in other studies (Hoerl, Kenn-
ard and Baldwin (1975), Hoerl and Kennard (1976), Gibbons (1981), R. Hoerl,
Schuenemeyer and A Hoerl (1986), Fomby (1987) ).

The overall performance of the HKB estimator is good with respect to
MSE, despite its high bias. Other studies, such as Hoerl, Kennard and Baldwin
(1975) and Gibbons (1981), comment on its good performance as well. On the



Table 1
Small Sample Ranking of the Estimates of the Parameter
Coefficients
Criterion Standard Deviation of Disturbance Distribution
of

Ranking 24.7 75 150 225

Bias 1. LS 1. Mc&G 1. HK 1. LS
2. Mc&G~ 2. LS~ 2. LS~ 2. HK
3. L&W 3. L&W 3. RIDGM~ 3. L&W
4. RIDGM 4. RIDGM 4. L&W 4, RIDGM
5. HKB 5. HKB 5. Mc&G 5. Mc&G
6. HK 6. HK 6. HKB 6. HKB

MSE 1. HKB 1. HKB 1. HK~ 1. HK
2. RIDGM 2. RIDGM 2. HKB 2. HKB~
3. Mc&G 3. HK 3. RIDGM 3. L&W
4. HK~ 4. L&W 4. L&W 4, RIDGM
5. L&W 5. Mc&G 5. Mc&G 5. Mc&G
6. LS 6. LS 6. LS~ 6. LS~

Var 1. HKB 1. HKB 1. HKB 1. HK
2. HK 2. RIDGM 2. HK 2. HKB~
3. RIDGM 3. HK 3. RIDGM 3. L&W
4, Mc&G 4. L&W 4. L&W 4. RIDGM
5. L&W 5. Mc&G 5. Mc&G 5. Mc&G
6. LS 6. LS 6. LS 6. LS

Note: The ~ sign denotes that the “linked” estimators yield almost identical results.

other hand Lawless (1978) and Wichern and Churchill (1978) cast doubts on its
use without further simulation studies.

The HK estimator is the most biased for small variances of the disturbances
and the least biased for large variances of the disturbances. A similar pattern
characterizes this estimator with respect to MSE. Hence, the present study casts
doubts on the superiority of the HK estimator over HKB, especially for small
variances of the disturbance term (Gibbons (1981) ).



Table 2

Small Sample Ranking of the Predictors of the Mean of the
Depended Variable

Criterion Standard Deviation of Disturbance Distribution
of

Ranking 24.7 75 150 225

Bias 1. LS 1. LS 1. LS 1. LS
2. HK 2. L&W 2. Mc&G 2. Mc&G
3. RIDGM 3. RIDGM 3. HK 3. HKB
4, Mc&G 4. Mc&G 4. L&W 4. L&W
5. L&W 5. HKB 5. RIDGM 5. RIDGM
6. HKB 6. HK 6. HKB 6. HK

MSE 1. Mc&G 1. HKB 1. HK 1. HK
2. RIDGM 2. RIDGM 2. Mc&G 2. HKB~
3. L&W 3. L&W 3. L&W 3. L&W
4. HKB 4. Mc&G 4, HKB 4. Mc&G
5. HK 5. HK 5. RIDGM 5. RIDGM
6. LS 6. LS 6. LS 6. LS

Var 1. Mc&G 1. HKB 1. HK 1. HK
2. RIDGM 2. RIDGM 2. Mc&G 2. HKB~
3. L&W 3. L&W 3. L&W 3. L&W
4. HKB 4. Mc&G 4. HKB 4. Mc&G
5. HK 5. HK 5. RIDGM 5. RIDGM
6. LS 6. LS 6. LS 6. LS

Note: The ~ sign denotes that the "linked” estimators yield almost identical results.

The RIDGM estimator has a satisfactory performance in both criteria,
although it turns out to be rather inefficient for large variances of the disturban-
ces. However, it is not superior to the rest of the examined estimators as reported
by Dempster, Schatzoff and Wermuth (1977) and Gibbons (1981) in their

respective extensive studies.

The L & W estimator does not take extreme positions with respect to the
criteria of bias and dispersion. However, the L & W estimator exhibits a poorer
performance than the one reported in the studies of Lawless and Wang (1976)

and Lawless (1978).
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Finally, the Mc & G estimator has a rather poor overall performance des-
pite its good ranking with respect to the bias for small variances of the distur-
bances. A similar result is reported in Wichern and Churchill (1978).

Table 2 provides the basis for the following observations regarding the
predictors of the mean values of the consumption variable. None of the ridge
predictors can be considered better than the others in every case, with respect to
the chosen criteria of bias and dispersion. That is, changing variances of the
disturbances cause an instability in the ranking of the ridge predictors. However,
the L&W and the Mc& G predictors perform relatively well, both for large and
small variances of the disturbances. The HK predictor turns out to be the most
efficient one for large variances of the disturbances and the least efficient for
small variances. The opposite can be said regarding the efficiency of the RIDGM
predictor. Ridge predictors have not been included in previous simulation stu-
dies and therefore it is impossible to compare our results. Finally, the LS predic-
tor is inferior to al ridge predictors with respect to the MSE and variance
criteria. On the other hand it is the least biased for al variances of the
disturbances.

5. Concluding Remarks

Severa extensive simulation studies have been conducted to compare ridge
estimators along with the LS estimator and resulted in providing substantial
evidence in favor of ridge estimators. However, lack of common elementsin the
design of these simulation studies makes it difficult to compare them with one
another and with this study and reach a universal conclusion regarding the small
sample properties of the ridge estimators. In view of these shortcomings it seems
desirable to examine whether any ambiguities in previous studies can be cleared
up. Specificaly, it needs to be seen whether the findings of other studies are
specific to the chosen structures or also hold for different structures and data
Sets.

In our simulation study we single out the HKB estimator for its overal
good performance. The LS estimator (predictor) is dominated in MSE by the
ridge estimators (predictors), as expected. No ridge predictor turns out to be
superior than the other ones. Finally, the small sample properties of the ridge
estimators are different from the small sample properties of the predictors, a
result worth investigating in alternative experimenta designs.
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