«ZIMOYAAI», Téuog 42, Tetiog 30-4o, [Mavemotmiwo IMewpaung / «SPOUDAI», Vol. 42, No 3-4, University of Piracus

MAXIMIZING THE RELIABILITY OF MARKETING MEASURES
UNDER BUDGET CONSTRAINTS

By
George A. Marcoulides and Zvi Goldstein
California State University at Fullerton

Abstract

Generalizability theory provides a framework for examining the dependability of measurements in
marketing research. When limited resources are available determining the optimal number of observa-
tions to use in a marketing measurement design that will maximize reliability is not a simple task. This
paper presents a method for determining the optimal number of observations to use in fully-crossed,
univariate and multivariate two- and three- facet measurement designs when resource constraints are
imposed. (JEL C61, M31).

1. Introduction

In recent years the theory of generalizability has gained increasing attention
with marketing researchers, as evidenced by the growing number of studies in
the literature which apply it (Peter, 1977; Peter, 1979; Berhman and Perreault,
1982; Rentz, 1987). Generalizability (G) theory (Cronbach, Gleser, Nanda, and
Rajaratnam, 1972) is a theory that provides a framework for examining the
dependability of measurements in marketing research. G theory extends classical
reliability theory most notably by recognizing and estimating the magnitude of
multiple sources of errors in measurements. Rentz (1987) reviewed the major
concepts in G theory and illustrated its use as a comprehensive method for
designing, assessing, and improving the dependability of marketing measures.
Clearly, the greatest contribution of generalizability theory to marketing
research lies in its ability to model a remarkably wide array of measurement
conditions. Unfortunately, when limited resources are available the ability to
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design measurement studies tht maximize reliability is not a simple task. The
purpose of this paper is to present a method that can be used to determine the
optimal measurement design when cost constraints are imposed on the design.

2. Review of Basic Generalizability Theory Concepts and Measurement
Issues

In generalizability theory there is an important distinction between general-
izability (G) studies and decision (D) studies. G studies are associated with the
development of a measurement procedure, whereas D studies apply the proce-
dure in practical terms (Shavelson and Webb, 1981). In fact, according to Rentz
(1987), the greatest benefits of generalizability analysis are derived when modifi-
cations to a measurement procedure are analyzed and an acceptable design is
chosen relative to maximizing the reliability within cost or other practical con-
straints. Thus, if the results of a G study show that some sources of error in the
design are very small, then a decision maker may reduce the number of levels of
that facet (e.g., occasion of observation), or may even ignore that facet in a D
study. This permits a smaller and less costly design for the D study than that
used in the G study.

A major contribution of generalizability theory, therefore, is that it permits
a decision maker to pinpoint the sources of measurement error in the design and
increase the appropriate number of observations accordingly in order to obtain
a maximum level of reliability (Shavelson, Webb, and Rowley, 1989).

For example, in a study of the dependability of measures of brand loyalty
(Peter, 1979), the investigator considered items and occasions to be important
factors that could lead to the undependability of the measurement procedure.
Thus, the variance components for a person by items by occasions (p x i  0)
fully crossed design were estimated using a 10 item brand loyalty scale adminis-
tered to 100 persons on 3 occasions. One question that a researcher can deter-
mine is whether the reliability of the measurement procedure can be increased by
adding more occasions or items.

The estimated variance component for each source of variation in the above
example G study of brand loyalty scores are presented in Table 1. From these
estimated variance components, a generalizability coefficient, analogous to the
classical reliability coefficient, can be calculated by dividing the estimated per-
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son variance component by the estimated observed-score variance. As can be
seen in Table 1, occasions of measurement are a substantial source of error
variation. The item variance is relatively small indicating that the items used to
measure brand loyalty are providing consistent information. This is also
reflected in the small variance components of the person by item interaction and
the item by occasion interaction. Clearly, the number of occasions of measure-
ment has the greatest effect on generalizability, whereas the number of items has
little effect. For example, using 10 items and 1 occasion will produce an esti-
mated relative generalizability coefficient of p° = 0.84, compared to p’ = 0.79
when using 5 items and 1 occasion. However, when using only 5 items and 3
occasions produces an estimated generalizability level of p’= 0.91 [For a formal
development of the generalizability (G) coefficent and variance component
estimates see Shavelson and Webb (1981), Rentz (1987), and Marcoulides,
(1989a)].

The ability to design subsequent D studies more effeciently on the basis of
information from the G study is clearly one of the major advantages of general-
izability theory for marketing researchers. By trading off desired levels of relia-
bility and costs researchers can design optimal D studies. Unfortunately, while it
is important to have large coefficients of generalizability, such are not always
possible when conditions of scarce resources are present. The question then
becomes how to maximize the generalizability coefficient within a prespecified
amount of limited resources. For example, in a one-facet person by item (p ¥ i)
design, the question of satisfying resource constraints is simple. Choose the most
items that will give maximum generalizability without going over the available
budget. Unfortunately, when other facets are added to the design, obtaining a
solution can become quite complicated, especially since each decision will pro-
duce a different costing D study design.

Marketing measurements also often involve multiple scores in order to
describe individuals' preferences (Peter, 1979). For example, an instrument
designed to measure brand loyalty might use subtests to measure two different
dimensions of loyalty, or an instrument designed to measure consumer problems
relating to food products might use subtests to measure five different dimen-
sions: physiological, sensory, activities, buying and usage, and psychological/
social (Tauber, 1975). Under such measurement conditions, in order to examine
the multiple dependent scores simultaneously, a multivariate generalizability
analysis is essential and the univariate procedures described by Rentz (1987)
must be extended to include multivariate designs.
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In multivariate generalizability theory the notion of multifaceted error var-
iance is basically extended to include all types of multivariate designs. As much,
multiple scores are treated simultaneously and the matrices of variance and
covariance components provide the essential information for deciding whether
the multiple scores in the measurement battery should be treated as a profile or a
composite as opposed to separate scores. Additionally, using the matrices of
variance and covariance components, and using the multivariate extension of
the univariate generalizability coefficient developed by Joe and Woodward
(1976), a decision maker can obtain the dimensions of scores which provide
maximum generalizability. Unfortunately, while Joe and Woodward's (1976)
procedure for calculating generalizability coefficients in multivariate designs
produces the coefficient with maximum generalizability, this procedure does not
take into account any budgetary constraints that might be imposed on the design
(i.e. the generalizability coefficient is obtained for an unconstrained solution).

It appears, therefore, that determining the optimal design to use in a univar-
iate or a multivariate multifaceted measurement design is not a simple task once
the number of facets is more than one. The purpose ofthis paper is to present a
general procedure for determining the optimal number of observations to use
that will maximize coefficients of generalizability in both univariate and multiv-
ariate multifaceted designs. The paper can be considered an extension on the
work of Cronbach et al. (1972), Joe and Woodward (1976), Rentz (1987), and
Shavelson and Webb (1981). Basically, for univariate and multivariate multifa-
ceted designs, a simple procedure is presented to determine the optimal number
of observations to use when cost constraints are imposed on the design. We
hope, by providing a clear and understandable picture ofthe procedure, that the
practical applications of this method will be adopted for optimizing measure-
ment designs in marketing research.

3. Selecting the Optimal Number of Observations in Measurement
Designs

3.1. The Two-Facet Univariate Case

Consider the two-facet person by item by occasion (p x i ¥ o ) study of the
dependability of measures of brand loyalty presented by Peter (1979). In order to
find, for example, the maximum relative generalizability, without violating
budget constraints, a certain number of observations for each facet must be
selected.
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The problem is a nonlinear optimization problem in which the decision
variables are the number of items (n;) and occasions (n,). The objective of the
optimization is to maximize the generalizability coefficient (pzﬂ) defined as:
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where

c = cost per item per occasion, and
¢ = total budget available.

Our task then is to find a set of values for n; and n, within the specified
budget (¢) which maximize p®. Since with respect to the optimization problem o’
is a constant, the objective is to minimize o’; under the imposed budget con-
straint of (3).

To obtain a solution let us differentiate the Lagrange function
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Thus, if the total available budget for the study is $50 and the cost per item
per occasion is $5.00, then the required number of items and occasions, using the
variance components in Table 1 are n*; = 2 and n*,= 5 (since the values of n; and
n, must be integers the solutions are always rounded to the nearest integer such
that the budget constraini is satisfied). The maximum generalizability coefficient
can then be obtained using equation (1), and in this example is equal to p* = 0.90.
Of course, additional constraints, for example on the upper bounds of the
number of occasions or the lower bounds of the number of items could easily be
imposed on the problem before optimizing the solution. Such additional con-
straints might become important when, besides the budgetary constraints, a
decision-maker is aware of other design restrictions. In this paper, however, we
are only interested in budgetary constraints.

3.2. The Three-Facet Univariate Case

Consider a three-facet hypothetical measurement design. Salespersons’ per-
formance is measured on a 31-item job performance scale (like the one deve-
loped by Behrman and Perreault, 1982) independently by three supervisors on
two occasions. The basic design in this hypothetical study is salespersons crossed
with items (i), occasions (j), and supervisors (k) with n;, n;, and ny number of
observations for each facet.

Thus, the error function to be minimized is
2 2 2 2 2 2 2
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in order to maximize p° from (1) subject to the constraint that
cninjne=C (8)
where

¢ = cost per ijk combination, and
¢ = total budget available for the measurement.

Once again, for our solution let us differentiate the Lagrange function L (n;

nj, N, A) = 023 - A (cni nj ng - €) with respect to ni, nj, Nk, and A. By setting the
results equal to zero we obtain at the optimal point:
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While no closed form solution can be found for the number of observations
of i, j, and k, from (9) we observe that at the optimal point of the solution there is
a special symmetric monotonically decreasing structure to the functions pres-
ented that can be used in a simple search procedure that converges quickly to the
environment of the optimum solution for n;, n;, and ny.

The proposed search procedure is as follows:

6(i) Start with any value of n;, say n,'" and solve for n;'"’ and n'” by the known
equality (9), namely a(n;) = B(n;) = ['(ny).

(ii) Substitute the values of n'”, n;'", n,") and calculate ninjny.

(1) Ifninjnie = ?c, the optimal solution has been obtained. Otherwise, one of
two conditions holds; Condition 1: If n; n; ny < _cc_’ at least one variable
must be increased to satisfy the equality n; n; ny = —2 and, consequently
all the variables must be increased to satisfy the necessary condition of
optimality in (9) An upper bound on say n; can be obtained by n'<ni<<

<( —-—) ( o™ ) Conditions 2: If n; n; nx > —, at least on variable must

be dccreased to satisfy the equality ninjn= ?and consequently all the
variables must be decreased to satisfy the necessary condmon of optimality
in (9). A lower bound on n; can be obtained by (—) (____W) <ni<n;".

lower bound + upper bound

(iv) Determine n; = , and use this value to obtain

2
n; and ny as in step (i) - (at iteration r the values will be ni'?, n;”, and n'").

4. Illustrative Example Using Search Procedure

The following example will illustrate how the search procedure works to
solve the three-facet case. Let us make use of the following estimated variance
components: 05 = 2, 05, =3, 05k = 5, 05ij = 1, 05k = 6, 05k = 4, and o7 = 2. If the
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total budget available is ¢ = 500, and cost per ijk combination is ¢ = 10, using the
proposed procedure we can calculate the optimal number of conditions to use to
obtain the largest coefficient of generalizability.

By arbitrarily setting a(n;) = 0 we get n'" = 4.08, and by substitution in a

similar manner in (9) we get from g (n;), n;'"’ = 6.12, from I'(ny), n'"’ = 15.8, and
—c"-= 50. This results in ninyne = 394.8>50. Thus, n'", n/", and n'" must be
simultaneously reduced according to Condition 2.

1

Let us calculate the lower bound on n;'" by (—E) (—o—w ) <n<n"
nj " Ng

which gives 0.52<n;<4.08. By the simple bisection on the bounds the new value

of n@js 3:08+0.52 _, 54 Using this value from B(n;) and I'(ni) we get ;' =

3.44 and n'” = 6.84. Thus, ninjnx = 54.07>50 and once again, n”, n;”, and n,”
must be reduced.

Calculating a new lower bound for ni'” we get n;"”’ = 2.21, n;'” = 3.31, and
n® = 6.49. This gives ninjnx = 47.48<50, and we see that if these values are
rounded to the nearest integers we get a solution close to the optimal with n; = 2,
n; = 3, and ng = 6. This combination of the number of facets for ijk yields the
largest coefficient of generalizability undee the imposed budget constraint (in
this example p’ = 0.91).

5. Selecting the Optimal Number of Observations. In Multivariate
Designs

As previously indicated, marketing measurements also sometimes involve
multiple dependent scores. Under such measurement conditions, a multivariate
analysis must be selected to find the maximum multivariate generalizability
coefficient. While there are some similarities between the optimization of univar-
iate and multivariate designs, there are also some important differences that
require we present the multivariate method of optimization in its entirety for the
two- and three- facet example designs.

5.1. The Two - Facet Multivariate Case.

Consider the following multivariate two - facet crossed- person by occasion
by rater (p x o x r ) design presented in Marcoulides (1989b). A salesperson’s job
performance measure consists of three major forms. Each form consists of items
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(e.g. for Form A these might include meeting deadlines, volume of work, accept-
ing direction, etc.) and the score for each form is the sum across items on that
form. In the generalizability study, two supervisors (raters) rate 35 salespersons
on two different occasions on job performance.

Table 2 presents the results of the variance - covariance components
obtained from a generalizability analysis on the job performance test data. In
order to find the maximum generalizability coefficient without violating budget
constraints, a certain number of observations for each facet in the multivariate
design must be selected. It is important to note that changing the number of
levels of a facet in a multivariate decision study has an effect on the estimate of
error in the same manner as in the univariate case. The problem of finding what
number of observations to use for each facet, therefore, just like in the univariate
case, is a nonlinear optimization problem in which the decision variables are the
number of occasions (n.) and raters (n;). The objective of the optimization, of
course, is to maximize the multivariate generalizability coefficient (p°), defined
by Joe and Woodward (1976) as:

2 a2’ Voa
p = = 5 (1n
a’Vpa+ta'Va
where
V V Voor, e
¥ e Ry (12)
n, n: Nolly
under the budgetary constraint that
cnon; =< ¢ (13)

where
¢ = cost per rater per occasion,

¢ = total budget available,

V = a matrix of variance and covariance components estimated from the mean
product matrices for each effect,

a = the vector of canonical coefficients that maximizes the ratio of person varia-
tion to person plus error variation, and

V, = the relative error matrix (the multivariate analogue to the univariate error
2
o).
8
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According to Joe and Woodward (1976), the p” and a for any design can be
obtained by solving the following set of equations:

[Vo-pl (Vp+V)]a=0 (14)

where the subscript A refers to the characteristic root of (14) and a its associated
eigen vectors.

Thus, for each multivariate generalizability coefficient corresponding to a
characteristic root in (14), a set of coefficients defines a composite of scores in the
design. The number of composites defined by the coefficient is equal to the number
of different measures entered in the analysis (in this example the 3 forms). By
definition, the first composite will be the most reliable (Webb, et al., 1983).

Our task then is to find a set of values for n, and n, which maximize p* without
violating the budgetary constraint (13) imposed. Note that although for a given
number of observations of facets the maximum generalizability coefficient is
obtained by finding the largest characteristic root of (14), in our constrained prob-
lem the number of observations is unknown (since that is what the optimization will
actually determine). So the characteristic equations of (14) becomes an implicit
function of A (the eigenvalue) and the number of observations (like n, and n.).
Therefore, because obtaining an exact solution of an implicit function is intractable,
we propose a constrained search procedure that will result in a sufficiently good
solution that is very close to the optimal. This procedure is based on the observation
that an optimal solution, which provides the largest value possible for the G coeffi-
cent under the budget constraints imposed, can be obtained once all the elements in
the variance- covariance matrix V, are minimized. Since with respect to the optimi-
zation problem V, is a known constant matrix, our multidimensional objective is to
minimize all components in the matrix V, under the imposed constraint that

cnen, = ¢ (15)

In the univariate case this minimization would be equivalent to minimizing (:12‘5
(as in equation (2)) with the optimal values of n, and n, obtained (similarly to (5)
and (6).

For the multivariate design, however, we have the matrix V., with each element
in the diagonal being equivalent to the univariate case presented in (2), while the
off-diagonal elements include the covariances of the components. If we denote the
elements in the V, matrix as i, our objective is to minimize all of them simultane-
ously. Thus, the minimization is equal to:
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where lower— case v is the variance or covariance component in the design.

Unfortunately, the optima for each 8 may not necessarily be the (global)
optima. In fact, a global optima might not even exist. In other words, the values
of n, and n, that might minimize each of these equations individually might not
be the optimal for all of them together. Thus, a conflict might occur which can
only be resolved by finding that combination of n, and n, that actually minimizes
the entire set of equations in the best possible way. For our solution let us first
assume that we can optimize V, with respect to each element §ix in the matrix
independently [as can easily be observed, at any optimal point the constraint is

- . I F Vpor, e .
satisfied as an equality, therefore, for the optimization Lni"— is constant and

odir

can be ignored]. Denote that solution value by 6%k, which basically becomes the
goal of each &) minimization. However, due to the possibility of a conflict
occuring between that combination of n, and n; that actually minimizes the
entire set of equations, we will consider only the deviations from the goal. The
deviations from the goal are denoted as:

dig = 8y -6*=0  foralljand k (18)

We then try to minimize the sum of these deviations in order to obtain
values as close as possible to the intended goals, namely:

Min ZkZd,-k (19)
i

subject to
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(Note that for convenience we write E—= N)
and

n,, n, =0 (22)

For simplicity, let us eliminate the variable n, by the equality constraint

non; = N, (which gives n, = —Lﬂ ) and obtain the minimization of the sum of the
Qa

deviations as in (19) subject to

Vpo Vor
PO jk 5 Prjk - N - djk = atjk (23)
no N

along with (21) and (22).

Using the Lagrange relaxation we get:

L(A,n,d)= EkZd,-. - Zk 2 ( Voou o Veri no - dix - %) (24)
i i

Ny N
where A={Ax}for j=1,..,m; k=1,.,n
d={dp}for j=1,..,m; k=1, ., n.

By differentiation with respect to A, di, no and setting the results equal to zero
we get:

(E Ve
) N (25)
E Z VW_,k
K
and
Z‘. Z Very
_kJ .N (26)
LT Verx
k j
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(It is important to note that these equations will reduce to equations (5) and (6)
in the univariate two- facet example if each form is examined separately)

Thus, if the total available budget for the testing procedure in the salesper-
son’s job performance measure is $200 and the cost per occasion per rater is $30,
then the required number of occasions and raters, using the obtained variance
and covariance components in Table 2, are n, = 2, n; = 3. The maximum general-
izability coefficient would then be obtained by (11), and in this example provides
the results presented in Table 3.

As can be seen in Table 3, the maximum generalizability coefficient is
p’= .86 with .233, .061, .300 composite for the job performance measures. Webb
et al. (1983) indicate that the analogy of factor analysis is helpful in understand-
ing how to interpret the coefficients of the composites and the resulting dimen-
sions. In summary, the coefficients (a) in the multivariate generalizability analy-
sis presented in Table 3 are analogous to factor loadings, the dimensions are
analogous to factors, and the composites are analogous to factor scores. Thus,
the generalizability coefficient determined by the optimal solution under the
imposed budget constraints indicates that the first dimension is a composite
heavily weighted by the items on Form A and the items on Form C. It is
important to note that similarly weighted composites were observed when the
generalizability coefficient for an unconstrained problem was determined. For
example, when n, = | and n; = 1 the coefficient was p’=.62 witha.113,.057,.299
composite. Therefore, imposing constraints on the generalizability analysis and
then solving for the coefficients does not change the interpretation of the contri-
bution of each form to the general composite.

5.2. The Three- Facet Multivariate Case

Consider a three- facet p x i x j x k multivariate design with ijk facets and
with n;, nj, and nx number of observations. For example, such a design might be
used in a study of supermarket product sales strategies for three randomly
selected products to examine the effects of price, display type, and time of
advertising (Wilkinson, Maon, & Paksoy, 1982). In such a generalizability study,
three products might be measured in terms of three price and display levels, on
two occasions during the day at ten different supermarkets. If there is a limited
budget available, we would need to find a set of values for the number of
observations of facets that will maximize generalizability without violating the
budget.
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Unfortunately, the three- facet case is considerably more complicated than
the two- facet case, and no closed form equations can be determined. Instead, by
applying a similar approach to that used in the two-facet case, combined with
the search procedure from the univariate three-facet problem, we will propose a
simple search procedure that converges quickly to the optimal solution.

Similarly to the two- facet case, the function to be minimized is:

Vi Vi Vox Voij Vi Vopix Voiik, ¢
W, Yo, Ve, pi pik pik pijk,

1 n; Nk nin; NNk 1Nk ninjny

V. =

&

27

under the budgetary constraint that
cninjng = ¢ (28)

As shown in the two-facet case, the simplest approach is to try and minim-
ize all the elements 0r of the matrix V, together, namely:

. Voig Veig Vekg o Vi Vpik o, Vpik y  Vpilk, e 1
Min 6m = + + + + + + (29)
I n; Nk nin; ning njng NinjNg

forr=1,..,mands=1,.,n.

Once again, denote the solution of &; by 8*, which basically becomes the
goal of each & minimization. Any deviations from the goal can be obtained
again by:

ds=0s-0*%.=0 for all r and s.
The minimization of the sum of deviations is:
Min ZkZd - (30)

subject to (with some algebraic manipulation):

Vpi Vpj Vpk Vpij Vpik Vpik
rs+ rs+ rs+ s Cny s 'nj+ s -nj-dr5=6*m
1; n; Nk N N N
(31)
nining = N (32)
and
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ni, nj, Nk =0 (33)

Using the Lagrange relaxation we get:

o B Vi 5 Vois ,  VYekog 34
L\, ni g, i, d) = 2Xd - BN [—=+ — = (34)
Vpij Vpik s ijk 3
L T ‘Nj+t ———— M- ds - %5
N TN TN ]
= A (n;njnk = N)

where A = { A} forr=1,..,m; s=1,.,n
d={ds} forr=1,..,m; s=1,.,n.

So by differentiation with respect to A, As, dis, 0y, 0j, Nk and setting the results to
zero we obtain at the optimal:

ai (i) = a () = o (i) (35)
where
Vpx Vpy
2 \x) = EE i = . x
ox (Ny) > r[ = N n ]
with x = 1,j,k
y = jk, ik, ij
and

ninjng = N

From (35) we observe that at the optimal point of the solution there is a
similar symmetric monotonically decreasing structure to the functions presented
in the univariate three- facet case that can be used in the previously presented
bisection procedure that converges quicly to the environment of the optimal
solution. For this reason, we will only present an illustrative example.

6. Illustrative Example

The following example will illustrate how the proposed search procedure
works for a three- facet multivariate case. Let us make use of the estimated
variance and covariance components presented in Table 4. If the total budget
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available is $600 and the cost per ijk (price, display, occasion) combination is
$50 (i.e. N= 12), using proposed procedure we can calculate the optimal number
of pricing levels (n;), display types (n;), and occasions (ni) to use within the
specified budget that will give the largest coefficient of generalizability.

Table 5 presents the complete set of iterations in the search procedure, with
the final number of observations after six iterations equal to n; = 2.75, n; = 1.98,
and ni = 2.09. If these values are rounded to the nearest integers we get the best
possible solution close to the optimal with n; = 3, n; = 2, and nx = 2. This
combination of the number of observations of facets ijk yields the minimized
sum of the deviations £X d.s which minimizes V, and maximizes p’. Thus, in
order to maximize generalizability in future D studies of supermarket product
sales strategies under similar budget constraints, a researcher would need to
study three pricing levels, two display levels, on two different measurement
occasions. For example, a researcher might want to study on two different
occasions regular, cost, and reduced prices along with normal and special types
of displays. Table 6 presents the results of the multivariate generalizability anal-
ysis. Thus, using these values in equation (11), p* = .70 is the largest coefficient of
generalizability that can be obtained without violating the budgetary constraint
imposed.

7. Summary and Conclusions

In this paper we have presented a methodology for determining the optimal
number of observations of facets to use in univariate and multivariate measure-
ment designs that maximize generalizability when resource constraints are
imposed. Using these sets of procedures, a decision maker can determine the
number of observations that are needed to obtain the largest possible generaliz-
ability coefficient for a given amount of resources. Of course, if a decision maker
wished to determine the minimum number of observations per subject for a
specified generalizability coefficient, this could easily be obtained by using our
procedure and a decision maker could then examine the tradeoff between the
coefficient of generalizability and the total budget. Although the present paper
only considered univariate and multivariate fully crossed two- and three- facet
designs, parallel solutions can easily be obtained for other types of designs that
might be encountered in practical marketing research applications.
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Table 1

Estimated Variance - Components for
G Study of Brand Loyaly*

Source of Variation

Estimated Variance Component

Persons (p)
Items (i)
Occasions (o)

pi

po

io

Residual (pro,e)

1.892
0.389
3.264
0.083
0.235
0.025
1.250

* Adopted from Rentz (1987)
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Table 2

Estimated Variance- Covariance Components for
Multivariate G Study of Job Performance

Source of Variation Form A Form B Form C
Persons (p) A 2.59 2.34 1.21
B 2.34 6.37 2.71
C 1.21 2.71 4.06
Occasions (0) A -0.05 -0.11 0.03
B -0.11 0.65 0.33
C 0.03 0.33 0.23
Raters (r) A 0.31 0.10 0.09
B 0.10 0.86 0.01
C 0.09 0.01 0.51
po A -0.11 -0.14 0.04
B -0.14 1.26 0.59
C 0.04 0.59 0.37
pr A 0.64 0.24 0.16
B 0.24 1.11 0.08
C 0.16 0.08 0.81
pro, e A 2.63 0.94 0.02
B 0.95 5.84 0.32
(@ 0.02 0.32 1.62
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Table 3
Generalizability and Canonical Coefficients for
Decision Study
Dimensions
Ia Ib Ila IIb Illa I11b
Form A 233 13 -400  -303  -.449 -.315
Form B .061 057 -142  -117 403 .266
Form C .300 .299 416 270 -.123 -.090
Multivariate G 865  .621 183 422 637 291

a. Constrained solution with n,= 2 and n,= 3.
b. Unconstrained solution with n,= 1 and n= 1.
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Table 4
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Sourse of Variation Product A Product B Product C
p A 0.70 0.64 0.88
B 0.64 0.65 0.71
C 0.88 0.71 0.98
pi A 0.18 0.32 0.09
B 0.32 0.13 0.08
c 0.09 0.09 0.33
pj A 0.13 0.08 0.15
B 0.08 0.10 0.07
C 0.15 0.07 0.10
pk A 0.12 0.11 0.09
B 0.11 0.13 0.02
C 0.09 0.02 0.17
pij A 0.07 0.03 0.01
B 0.03 0.10 0:02
C 0.01 0.02 0.05
pik A 0.12 0.07 0.06
B 0.07 0.10 0.03
C 0.06 0.03 0.11
pik A 0.03 0.02 0.01
B 0.02 0.05 0.08
[ 0.01 0.08 0.06
pijk, e A 0.63 0.91 0.16
B 0.91 1.57 0.21
C 0.16 0.21 1.26

Note: The variance- covariance components for the I, J, K, 1J, IK, JK, and 1JK sources of
variations are not displayed in the table because they are not needed for solving the optimization

model presented.
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Table 5

Search Procedure Iterations

Iteration n; n; N nnng  upper lower upper + lower
n; n;
1 1 0.75  0.71 0.53 18.70 1 9.85
2 985 592 943 552.28 985 1* 5.41
3 5.41 360 470 91.95 542 I* 3.21
4 3.21 228 249 1822 3.21 1.76 2.49
5 249 179 1.85 8.25 3.01 2.48 2.75
6 2,75 198 298 11.38 275 242 2.59

* Indicates value rounded to 1.

Table 6

Generalizability and Canonical Coefficient for
Decision Study of Supermarkets

Product Dimension

I 11 111
A 715 -1.699 -5.802
B -.226 2.168 3.109
C . .388 -0.101 2.618
Multivariate G .703 .361 Oa

a. Value rounded to zero.
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