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Abstract

The derivation and solution of the celebrated Black-Scholes Option Pricing Formula is set out in
rather more detail than has appeared in the literature so far. One problem with the Black-Scholes analysis
is that the mathematical skills required in the derivation and particularly in the solution of the model are
fairly advanced and probably unfamiliar to most economists. This paper derives the partial differential
equation for the call option price and gives full details of its solution. All the necessary mathematics are
given in three appendices. It is anticipated that the mathematical methods detailed here will be of wider
applicability in Economics and Finance. (JEL G13).

1. Introduction

Interest in the theory of option pricing received a major stimulus in 1973
with the publication of a pioneering paper by Black and Scholes (2). The Black-
Scholes paper represents a milestone in the option pricing literature for several
reasons: on the one hand it was the first realistic general equilibrium model of
option pricing; but it is equally important in the sense that it has engendered
much subsequent literature on the valuation of many types of contingent claim.
(See, for example, references (3), (8), and (13) in the bibliography). Finally, it
had important implications for empirical work. Since the price of a call option
depends on only five quantities (all of which are either directly observable or
easily measurable) the empirical calculation of option prices can be a relatively
simple task.

One problem with the Black-Scholes analysis, however, is that the mathem-
atical skills required in the derivation and solution of the model are fairly
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advanced and probably unfamiliar to many economists. The analysis is essen-
tialy in two parts. Firstly, Black-Scholes show how a riskless hedge can be
constructed when the stochastic process for the underlying asset price is lognor-
mal. It is thus shown that the call option price is determined by a certain second
order partial differential equation. The second part of the anaysis involves
solving this partial differential equation and thus deriving the celebrated Black-
Scholes pricing formula

The firgt part of the analysis has received considerable attention in the
literature. It has been discussed in detail by Cox and Ross (8), Chow (6), Cox
and Rubinstein (9), Smith (16) and Malliaris (11) as well as in the original
Black-Scholes paper - and thisis aby no means exhaustive list of references. The
second part is rather more difficult and details of the solution technique for the
partial differentia equation of the option price have not been given coverage in
the literature. Black and Scholes give few details and smply state the solution
—the Black-Scholes formula. Several authors have searched for aternative ways
of deriving the Black-Scholes formula that avoid the necessity of solving a
partial differential equation. Usually these assume making certain assumptions
about investor behaviour and the work of Cox and Rubinstein (9) is typical of
this type of approach.

The purpose of this paper is to st out the derivation and Solution of the
Black-Scholes model in some detail. The following section deals with the deriva
tion of the partial differential equation for the option price, section three covers
the solution of the partial differentia equation and section four offers some
concluding remarks. The material in section two has already received much
attention in the literature and is thus dealt with rather briefly here. In contrast,
the material of section three has received little (if any!) attention and is discussed
here in some detail.

Mathematical appendices are provided for those areas of mathematics
which are likely to be unfamiliar to many economists. Our am is to make the
type of analysis required in the Black-Scholes model more accessible and thus to
stimulate further interest in the theory of pricing of contingent claims.

2. The Black-Scholes model
The holder of a European call option has the right to purchase a unit of a

given stock at a certain price, the exercise price, on a certain date, the exercise
date. Assume that:
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P(t) = F(t, S(1) ) (e))

where P(t) is the price of a call option at time t and S(t) is the stock price at time
t. The stockprice is allowed to vary continuously and is assumed to be generated
by the following stochastic differential equation (see appendix A):

dS = aSdt + oSdz 2

where a and o are positive constants and dzis the increment of a Wiener process
(see appendix A). Thus:

dz ~ N(O; dt) 3

Consider an investor who builds a portfolio of three assets; the stock, an
option on the stock and a riskless asset such as a Government bond. This latter
earns the riskless competitive rate of return, r, which is assumed to be constant
here for simplicity. Assume that there are no transactions costs, the market
operates continuously and no dividends or other distributions are paid to stock
holders. Let:

Ni(t) = number of units of the stock held at time t
N2(t) = number of units of the stock on which an options is held at time t

and let Q(t) be the number of units of currency invested in the riskless asset at
time t. Then the nominal value of the portfolio at time t is:

TI(t) = Nu(1).S(t) + No(t)P(t) + Q(t) 4)
Differentiating (1) using Ito’s lemma (see appendix A) gives:
dP = Fdt + F.dS + 4F(dS)’ (5)
But, from (2) and (3)
(dS)’ = o’S%dt (6)

Therefore, substituting from (2) and (6) into (5) givts:
dP = F,dt + aSF.dt + 6SF.dz + 40’S’F.dt
or rearranging:

dP = [F, + oSF; + 140°S’F] dt + cSF.dz @)
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Changes in the nominal value of the portfolio arise because of changes in
the prices of the assets because at a point in time the quantities are given, i.e.
dNi(t) = dN2(t) = 0. Therefore:

dIl = NidS + NodP + dQ (8)
But by definition:
dQ = rQdt ®
So, substituting from (2), (7) and (9) into (8) gives:

dITl = N, [aSdt + cSDz ] + rQdt
+ N, { [F. + aSF, + 16°S’F,;] dt + oSF.dz }

or, rearranging:

dIT = { NyaS + rQ + N, [F, + aSF; + 146°S’Fy] } dt
+[ N; + N2F,] oSdz (10)

For arbitrary quantities of the three assets, the change in portfolio value is
stochastic (via the last term in equation (10)).

But if the quantities of stock and call are chosen such that N;+N,F; = 0 then
the portfolio becomes riskless and thus earns the competitive riskless rate of
return, i.e. we let:

Ni = -N,F, (11)
and then:
CIl]_n =7 (12)

Substituting (1) and (i1) into (4) and substituting (11) into (10) gives,
respectively:

11 =N, [F-SE]+Q 13)
dIT = { Ny [F. + %0’S’Fs] + 1Q } dt (14)
Finally, substitute (13) and (14) into (12) and:

{ N2 [F, + 40°S’F] + 1Q } dt
N; [F - SFE]+Q

=rdt
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Simplifying and rearranging gives the following second order partial differential
equation in the option price:

F. + ISF, + %6°S’F -tF = 0 (15)

3. Solution of the Partial Differential Equation

Let t* denote the exercise date and let E denote the exercise price. Then we
require the solution of equation (15) that also satisfies the boundary condition
(see appendix B for the solution of partial differential equations):

F (S, t*) = max (O; S(t*) - E) (16)

Equation (15) is a linear second-order partial differential equation of the para-
bolic type. By choice of suitable coordinates, any parabolic equation can be
reduced to the canonical form (see appendix B):

G = Gy (17)
We proceed by letting:
F(S,t)=e™ G(x,y) (18)

where x= x(S, t), y= y(S, t) and T= t* - t (the time to go to the exercise date).
Partially differentiating (18) gives:

F.= E-rT [Gxxs *: Gy)’s] (19)
Fi=re™ G+e™ [Gx: + Gyyi] (20)
Fs= e’ [Guxzs + GryXs¥s + GaXes + GyaXeys + nyyzs + Gyyss) (21)

Substituting (18) - (21) into (15) gives (after a bit or rearrangement):
146°S%*Gxx + 0°S™%y:Gry + 146°S’YAGyy
+[140°S X + 1% + X.] Gx + [1667S?yss + 1Sy, + y] Gy = 0 (22)

If (22) is to reduce to an equation of the form given in (17) we need the functions
x(S, t) and y (S, t) to satisfy the following:
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146" S™X% + 146°S Y + 1Sy + v = 0 )
o°S’xys = 0 ;

) 23)
46’S’y% = 0 )

)

)

14578 Xss + TSXe + X = 0

The third of these conditions shows that y does not depend upon S. Thus it is a
function of t only. Using this, conditions (23) reduce to:

1457837 + yi=0 )
) (24)
14678 Xss + ISXs + Xt = 0 )

Since y is a function only of t it is clear from the first of conditions (24) that Sx
must not depend upon S. Looking for the simplest possible transformation, let:

x(S, t) = BIn(S) + yT (25)

where B and y are constants. Differentiating equation (25) and substituting into
conditions (24) gives:

Vo’B? + ¥, = 0 )
) (26)
Yo'B+rp-y=0 )

Soif welet B =1,y = r-%c” and y(t) = 14c’T the simplest transformation to give
the desired result is:

x(S, t) = In(S) + (r - %o)T (27)
y(t) = %o’T (28)

It is worth noting that this is a much simpler transformation than that suggested
by Black-Scholes.

Applying (27) and (28) to (15) and (16) thus gives
Gu =Gy (17)

with boundary condition:
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f(x) = G(x, O) = max [O; ¢" - E] (29)

To solve this equation assume that G is separable and may be written:

G(x, y) = X(x) Y(y) (30)
Then G = X" "(x) Y(y) and Gy = X(x) Y ' (y)
X)) Y(y) = Xx) Y'(y) (1)
Divide each side of (31) by G and thus:
X7 N
X “yk 2

where k is the separation constant. This suggests the following pair of ordinary
differential equations:

X"-kX=0 (33)

Y -kY=0 (34)
For (33), since k can assume any value, the most general solution is:

X(x) = Ae™ (35)

where A is an arbitrary constant and A =+/ k ; i is the imaginary unit, defined by

i=+ -l
For (34), the most general solution is:
Y(y) = Be™ (36)

where B is a constant. Thus the most general product solutions (referring to
(30) ) are:

G(x, y) = Oe[ilx o ?\,2).'] (37)
where ¢ (FAB) is an arbitrary constant.

Since A can take amy value we apply the superposition principle to obtain
the most general solution:

-

G(xy)= j (Ve P21 g) (38)

-00
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‘When y=0, the solution must satisfy the boundary condition G (x, 0) = f(x) given
in (29). Thus setting y=0 in (38):

f(x) = j c(A)e™dA (39)

—o0

From (39) we recognise that f(x) and c¢(\) are a Fourier transform pair (see
appendix C). Therefore:

2o 3
C(”‘z_ﬁj

oo

f(x)e—ih X dx ( 40)

Substituting (40) into (39):

G(x, Y):zl—nf [ f(u)e{i("-x}A+A2y] il 1)

Reversing the order of integration and integrating first with respect to A:

® 2
G(xy)= — [ f(u)e P07 dy (42)
2vVIly /e

Substituting for f (u) from (29) gives

G(x, y) - 1 I (eu % E) e "(I.l - x)2/4y du

2 /Iy Mg

Next, using (18), (27) and (28) gives an expression for F (S, t), i.e.

=T

F (S, t) = € L (eu _ E) e -[l.l - !n(S)- (I’- '/50'2}7]2."202‘1" du (43)
n(E})

o+/2IIT

To evaluate this integral first write it as the pair of integrals:

F(S, )= e f e“'[“'[“(s)‘("%ﬂz)ﬂ‘ﬁoz’l'du
o/2IIT J laE)

Ee ™" ' o o106 - (- % AT2/262 T - (44)
In(E)

o/ 21T
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In the first integral on the right-hand side of equation (44) add and subtract the
quantity [In(S) + r'T] to the exponent under the integral sign. This integral is then
transformed into:

T [ e u-lu-1n(S)~(r- %0 T)) 20%T di= S j e u-in@®)-0+ woDTR bzrdu

G\XEHT IniE) o\/2IIT

u-In@S)-(r+%c)T

VT

Then this integral is further transformed and

In(E)

Now let () =

e-rT

o+/2IIT

o vlu-t®)- -5 AT26?T g - S 2 40
In(E) Vel

f‘” J. [In(S/E) + (1 + Ya)T] | o/T

in (S/E) + (r + %o*)T )

(45)
o/ T

=§ P

where @ (.) is the cumulative distribution function for the standard normal
variate.

In the same way, for the second integral on the right-hand side of (44) let:

u-In(S) - (r - 40T

oV/T

Then:

b v ey 2.3 T
o Totn(®) - (- %o?) TP/2°T 3 Ee

w2
e dw
V211 J:m

In (S/E) + (r - %6)T

oV T

E e-rT

o+/2IIT

= [In(S/E) + (r + %oD)T] | o/T
J‘ In(E)

=Ee™ & ( (46)

Finally, substituting (45) and (46) into (44) gives the Black-Scholes formula for
the call-option price:
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In (S/E) + (r + )T ) Ee ™ & ( In (S/E) + (r - l,écz)T)
o/ T o T (47)

F(S,t)=S ® (

4. Concluding Remarks

Equation (47) is the formula derived by Black and Scholes and subsequently
much repeated elsewhere in the literature. As previously remarked it depends on
only five quantities; the stock price, exercise price and time to maturity are all
directly observable. For the riskless rate of return one could use as a proxy the
Treasury Bill rate or the London Inter-Bank Offer rate, suitably adjusted so as
to provide an instantaneous rather than an annual rate. For the variance rate, o,
various possibilities exist for its estimation. Latane and Rendelman (10) suggest
an ‘implied variance rate’ and Cox and Rubinstein (8) show how it may be
estimated directly from stock price data. Recently Chappell and Chrystal (5)
have derived an unbiased estimate of ¢ using the logarithms of stock price and
adjusting for non-linearity.

Appendix A. Stochastic Differential Equations

Only a bare outline of the fundamental concepts used in the paper can be
given here. The reader is invited to refer to references (1), (2) or (12) for fuller
details. Useful summaries are also to be found in (6) and (11).

Consider the stochastic difference equation:
x(t + h) - x(t) = hAx(t) + vt + h) - u(t) (Al)

where A is constant and u(t + h) - v(t) is a random term with zero mean.
Successive increments are assumed to be statistically independent through time,
whatever the choice of h. For h = 1, let the variance of v(t+h) - v(t) be o’. For
smaller values of h divide the unit time interval from t to t+1 into n increments of
equal length. Since the increments v(t+h) - v(t) are statistically independent and
h=1/n it follows that the variance of v(t+1) - v(t) is n times the variance of v(t+h)
- u(t): But we know that the variance of v(t+1) - v(t) is 6°; so it follows that the
variance of v(t+h) - v(t) is 6°/n = ho’. This is most important and is the funda-
mental point of difference between ‘normal’ calculus and stochastic calculus;
terms involving the square of v(t+h) - u(t) are of order h and not h’. As h
becomes very small, let h= dt and then:

dx = Axdt + dv (A2)
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where E(dv) = 0 and Var(dv) = o’dt. Equation(A2) is a stochastic differential
equation. Note that we cannot divide through by dt and take the limit as dt tends
to zero since the variance of dv becomes infinite in the limit. If we assume that
the successive increments, dv, are normally distributed then the stochastic pro-
cess is known are a Wiener process (or Brownian motion). In the engineering
literature the quantity dv/dt is sometimes referred to as continuous time white
noise, but this need not concern us here. See, for example, reference (1) for
further details.

Ito’s Lemma. Only a simplified version of this important result is given here. For
a more general treatment (extension to vector-valued stochastic processes etc.)
see reference (1).

Consider the non-linear stochastic differential equation:
dx = f(x, t) dt + o(x, t) dz (A3)

where dz is a Wiener process with zero mean and unit variance parameter. i.e.
dz ~ N(O, dt). Let y= g(x, t) be continuously differentiable in t and twice
continuously differentiable in x. We now derive a stochastic differential equation
in y. Let x satisfy (A3) then:

dy = yudt + yxdx + 1 yxdx” + o(dt) (A4)

where o(dt) signifies the sum of terms of smaller order than dt which can thus be
"disregarded”. But dx is given by (A3) and

dx® =[ f(x, t)dt + o(x, t)dz ]’
= o’(x, t)dz * + o(dt)
= 6’(x, t)dt + o(dt) (A5)

Therefore, substituting (A3) and (A5) into (A4) gives the following stochastic
differential equation for y:

dy = [y + yf(x, t) + 14 yux0’(x, )]dt + y:0(x, t)dz (A6)

Equation (A6) is a simplified version of Ito’s Lemma.
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APPENDIX B. Partial Differential Equations

Only a brief outline of some of the more important concepts can be given
here. The interested reader is invited to consult Churchill and Brown (7) or
Nicolescu and Stoka (14); Queen (15) also provides a useful introduction to the
subject.

The general linear second order homogeneous partial differential equation
in two variables has the form:

AUy, + BUy + CU,, + DU, + EU, + FU = 0 (B1)

where A, B, .... F may depend on x and y but not on U(x, y). The equation is
often classified as elliptic, hyperbolic or parabolic according to whether B*-4AC
is less than, greater than or equal to zero, respectively. By choice of suitable
coordinates any of these equations can be transformed into its canonical form.
These canonical forms are as follows:

For a hyperbolic equation: Wy - W, =0

For a parabolic equation: W - W, =0~

For an elliptical equation: Wy + W, =0
where s = s(x, y), r= r(x, y) and W(r, s) = U(x, y).

Once the equation is in its canonical form it is usual to assume that the
solution is separable. i.e. that:

W(r, s) = G(r) . H(s) (B2)
Differentiating (B2) gives W,.=G"'H, W;=GH", W,=G"".Hand Wx,=G.H"".
Dividing by W (= G.H) gives:
(a) For the hyperbolic equation:
This suggests the foll owing system of ordinary differential e quations:
H ' -kH=0; G"-kG=0 (B3)

where k is a separation constant. Similar reasoning results in:
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(b) For the parabolic equation:

H"-kH=0; G -kG=0 (B4)
(c) For the elliptical egaution:

H " -kH=0; G"" +kG=0 (BS)

The way in which one proceeds further largely depends on the boundary
conditions that the solution must satisfy and few general principles can be given;
frequently Fourier series or Fourier integrals are needed. The following is of
fundamental importance however:;

Superposition Principle:

Suppose Wi, W2, ..., Wy are solutions to the linear ho mogeneous partial
differential equation corresponding to th ose values of the sep aration constant, k,
which also satisfy the boundary conditions. Then C;W; + C;W; + ... + CxWh,
where Ci, C, ..., Cn are constants is also a solution. If the separation co nstant
can take any value, then the most general solution is:

J G(r, k) . H(s, k) dk (B6)

Appendix C. The Fouruer Transform

The Fourier transform of a function F(y) is defined by:

o0

= = 1 ixy
T [ F(y)e ~dy (C1)

-0

The inverse of the Fourier transform is defined by:

F(y) = j F (x)e™ dx €2
l;'(x) and F(y) are known as a Fourier transform pair.

By Fourier’s integral theorem, the integral representation of F(y) is derived
by substituting (C1) into (C2), i.e.:

F(y)=LJ JMdx I F(u)e™du (C3)

2
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Sufficient conditions under which Fourier’s integral theorem holds are:

(i) F(y) and F’ (y) are piecewise continuous in every finite interval -L<y<L.

(ii) f | F(y)| dy converges
(iii) F(y) is replaced by the arithmetic mean of its right-hand and left-hand
limits at any points of discontinuity of F(y)

N. B. There is no universal convention as to which integral is the transform
and which is its inver se, but ths is really of no importance. Also the position of
the factor 2II varies from author to author -an alternative is to place the factor
l/m in front of each integral; but again, this is of no imp ortance.
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